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Recapitulation of Lecture I and II
Linear system

Consider an ill-posed (square nonsingular) problem

Ax = b, b = bexact + bnoise, A ∈ R
N×N , x , b ∈ R

N ,

where

I A is a discretization of a smoothing operator,

I singular values of A decay,

I singular vectors of A represent increasing frequencies,

I bexact is smooth and satisfies the discrete Picard condition,

I bnoise is unknown white noise,

‖bexact‖ � ‖bnoise‖, but ‖A−1bexact‖ � ‖A−1bnoise‖.

We want to approximate

xexact = A−1bexact.
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Recapitulation of Lecture I and II
Linear system

Discrete Picard condition (DPC):

On average, the components |(bexact, uj )| of the true right-hand
side bexact in the left singular subspaces of A decay faster
than the singular values σj of A, j = 1, . . . ,N .

White noise:

The components |(bnoise, uj )|, j = 1, . . . ,N do not exhibit any
trend.

Denote

δnoise ≡
‖ bnoise ‖

‖ bexact ‖

the (usually unknown) noise level in the data.
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Recapitulation of Lecture I and II
Linear system

Singular values and DPC (SHAW(400)):
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Recapitulation of Lecture I and II
Linear system

Violation of DPC for different noise levels (SHAW(400)):
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Recapitulation of Lecture I and II
Naive solution

The components of the naive solution

xnaive ≡ A−1b =
∑k

j=1

uTj b
exact

σj
vj

︸ ︷︷ ︸

xexact

+
∑k

j=1

uTj b
noise

σj
vj

︸ ︷︷ ︸

amplified noise

+
∑N

j=k+1

uTj b
exact

σj
vj

︸ ︷︷ ︸

xexact

+
∑N

j=k+1

uTj b
noise

σj
vj

︸ ︷︷ ︸

amplified noise

corresponding to small σj ’s are dominated by amplified noise.

Regularization is used to suppress the effect of errors and extract
the essential information about the solution.
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Recapitulation of Lecture I and II
Regularization methods

Direct regularization (TSVD, Tikhonov regularization): Suitable
for solving small ill-posed problems.

Projection regularization: Suitable for solving large ill-posed
problems. Regularization is often based on regularizing Krylov
subspace iterations.

Hybrid methods: Here the outer iterative regularization is
combined with an inner direct regularization of the projected
small problem (i.e. of the reduced model).

The algorithm is stopped when the regularized solution of the
reduced model matches some selected stopping criteria based,
e.g., on the discrepancy principle, the generalized cross validation,
the L-curve criterion, or the normalized cumulative periodograms.
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Outline of the tutorial

I Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic
equations, Properties of the problem, Impact of noise.

I Lecture II—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria
for choosing regularization parameters, Iterative
regularization, Hybrid methods.

I Lecture III—Noise revealing:

Golub-Kahan iterative bidiagonalization and its properties,
Propagation of noise, Determination of the noise level, Noise
vector approximation, Open problems.
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Outline of Lecture III

I 9. Golub-Kahan iterative bidiagonalization and its
properties:

Basic algorithm, LSQR method.

I 10. Propagation of noise:

Spectral properties of bidiagonalization vectors, Noise
amplification.

I 11. Determination of the noise level:

Motivation, Connection of GK with the Lanczos
tridiagonalization, Approximation of the Riemann-Stieltjes
distribution function, Estimate based on distribution
functions, Identification of the noise revealing iteration.

I 12. Noise vector approximation:

Basic formula, Noise subtraction, Numerical illustration
(SHAW and ELEPHANT image deblurring problem).

I 13. Open problems.
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9. Golub-Kahan iterative bidiagonalization and its
properties
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9. Golub-Kahan iterative bidiagonalization and its

properties
Basic algorithm

Golub-Kahan iterative bidiagonalization (GK) of A :

given w0 = 0 , s1 = b / β1 , where β1 = ‖b‖ , for
j = 1, 2, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = Awj − αj sj , ‖sj+1‖ = 1 .

Then w1, . . . ,wk is an orthonormal basis of Kk(A
TA,ATb), and

s1, . . . , sk is an orthonormal basis of Kk(AA
T , b).

[Golub, Kahan: ’65].
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9. Golub-Kahan iterative bidiagonalization and its

properties
Basic algorithm

Let Sk = [s1, . . . , sk ], Wk = [w1, . . . ,wk ] be the associated
matrices with orthonormal columns. Denote

Lk =








α1

β2 α2

. . .
. . .

βk αk








, Lk+ =

[
Lk

eTk βk+1

]

the bidiagonal matrices containing the normalization coefficients.

Then GK can be written in the matrix form as

AT Sk = Wk L
T
k ,

AWk = [ Sk , sk+1 ] Lk+ = Sk+1 Lk+ .
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9. Golub-Kahan iterative bidiagonalization and its

properties
LSQR method

Regularization based on GK belong among popular approaches for
solving large ill-posed problems. First the problem is projected
onto a Krylov subspace using k steps of bidiagonalization
(regularization by projection),

A x ≈ b −→ ST
k+1 AWk y = Lk+ y ≈ β1 e1 = ST

k+1 b .

Then, e.g., the LSQR method minimizes the residual,

min
x∈x0+Kk(ATA,ATb)

‖Ax − b‖ = min
y∈Rk

‖Lk+y − β1e1‖ ,

i.e. the approximation has the form xk = Wkyk , where yk is a least
squares solution of the projected problem, [Paige, Saunders: ’82].
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9. Golub-Kahan iterative bidiagonalization and its

properties
LSQR method

Choice of the Krylov subspace:

The vector b is dominated by low frequencies (data) and AT has
the smoothing property. Thus ATb and also

Kk(A
TA,ATb) = Span{ATb, (ATA)ATb, . . . , (ATA)k−1ATb}

are dominated by low frequencies.
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9. Golub-Kahan iterative bidiagonalization and its

properties
LSQR method

Here k is in fact the regularization parameter:

I If k is too small, then the projected problem Lk+ y ≈ β1 e1
does not contain enough information about the solution of the
original system.

I If k is too large, then the projected problem is contaminated
by noise.

Moreover, the projected problem may inherit a part of the
ill-posedness of the original problem.
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9. Golub-Kahan iterative bidiagonalization and its

properties
LSQR method

Therefore, in hybrid methods, some form of inner regularization
(TSVD, Tikhonov regularization) is applied to the (small)
projected problem. The method then, however, requires:

I stopping criteria for GK,

I parameter choice method for the inner regularization.

This usually requires solving the problem for many values of the
regularization parameter and many iterations.
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10. Propagation of noise
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

GK starts with the normalized noisy right-hand side
s1 = b / ‖b‖. Consequently, vectors sj contain information about
the noise.

Consider the problem SHAW(400) from [Regularization Toolbox]
with a noisy right-hand side (the noise was artificially added using
the MatLab function randn). As an example we set

δnoise ≡
‖ bnoise ‖

‖ bexact ‖
= 10−14 .
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Components of several bidiagonalization vectors sj computed via
GK with double reorthogonalization:
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

The first 80 spectral coefficients of the vectors sj in the basis of
the left singular vectors uj of A:
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Using the three-term recurrences,

β2α1 s2 = α1(Aw1 − α1s1) = AAT s1 − α2
1s1,

where AAT has smoothing property. The vector s2 is a linear
combination of s1 contaminated by the noise and AAT s1 which is
smooth. Therefore the contamination of s1 by the high frequency
part of the noise is transferred to s2, while a portion of the smooth
part of s1 is subtracted by orthogonalization of s2 against s1. The
relative level of the high frequency part of noise in s2 must
be higher than in s1.
In subsequent vectors s3, s4, . . . the relative level of the high
frequency part of noise gradually increases, until the low frequency
information is projected out.
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Signal space – noise space diagrams:
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10. Propagation of noise
Noise amplification

Noise is amplified with the ratio −αk/βk+1:

GK for the spectral components:

α1 (V
Tw1) = Σ (UT s1) ,

β2 (U
T s2) = Σ (V Tw1)− α1 (U

T s1) ,

and for k = 2, 3, . . .

αk(V
Twk) = Σ (UT sk)− βk(V

Twk−1) ,

βk+1(U
T sk+1) = Σ (V Twk)− αk(U

T sk) .

See [Hnětynková, Plešinger, Strakoš: ’10] for a detailed derivation.
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10. Propagation of noise
Noise amplification

Since dominance in Σ(UT sk) and (V Twk−1) is shifted by one
component, in αk (V

Twk) = Σ (UT sk)− βk (V
Twk−1) , one

can not expect a significant cancellation, and therefore

αk ≈ βk .

Whereas Σ (V Twk) and (UT sk) do exhibit dominance in the
direction of the same components. If this dominance is strong
enough, then the required orthogonality of sk+1 and sk in
βk+1 (U

T sk+1) = Σ (V Twk)− αk (U
T sk) can not be achieved

without a significant cancellation, and one can expect

βk+1 � αk .

24 / 58



10. Propagation of noise
Noise amplification

Absolute values of the first 25 components of Σ(V Twk),
αk(U

T sk), and βk+1(U
T sk+1) for k = 7 (left) and for k = 12

(right), SHAW(400) with the noise level δnoise = 10−14:
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10. Propagation of noise
Noise amplification

Summary:

I At the early steps of GK, the relative level of the high
frequency part of noise in sk gradually increases with k .

I At some point the low frequency information is projected out.
Consequently, sk+1 is significantly smooter than sk . Here the
noise starts to seriously affect the projected problem.

I This point can be identified using spectral analysis of the
vectors sk (e.g. fft).
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11. Determination of the noise level
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11. Determination of the noise level
Motivation

If the noise level δnoise = ‖ bnoise ‖/‖ bexact ‖ in the data is known,
many different approaches can be used for the stopping criterion in
GK [Kilmer, O’Leary: ’01], e.g., the discrepancy principle [Morozov:

’66], [Morozov: ’84], [Hansen: ’98].

However, in most applications such apriory information is not
available.

Can this information be obtained directly from GK?
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11. Determination of the noise level
Connection of GK with the Lanczos tridiagonalization

GK is closely related to the Lanczos tridiagonalization
[Lanczos: ’50] of the symmetric matrix AAT with the starting
vector s1 = b / β1,

AAT Sk = Sk Tk + αk βk+1 sk+1 e
T
k ,

where

Tk = Lk L
T
k =











α2
1 α1 β1

α1 β1 α2
2 + β2

2
. . .

. . .
. . . αk−1 βk

αk−1 βk α2
k + β2

k











.
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11. Determination of the noise level
Connection of GK with the Lanczos tridiagonalization

Consequently, the matrix Lk from GK represents a Cholesky
factor of the symmetric tridiagonal matrix Tk from the Lanczos
tridiagonalization of AAT with the starting vector s1 = b / β1, see
[Hnětynková, Strakoš: ’07] and the references given there.
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

Consider the non-decreasing piecewise constant
Riemann-Stieltjes distribution function ω(λ) with the N

points of increase (nodes) associated with the given (SPD) matrix
B ∈ R

N×N , and the normalized initial vector s.

For simplicity, let eigenvalues λ1 < λ2 < · · · < λN of B be
distinct. Then

ω(λ) =







0 λ < λ1 ,
∑i

j=1 ωj λi ≤ λ < λi+1 ,
∑N

j=1 ωj = 1 λN ≤ λ ,

where the weight ωj = |(s, vj )|
2 is the squared component of s in

the direction of the jth invariant subspace of B .
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

An example of a distribution function ω(λ):

...

0

1

ω1

ω2

ω3

ωN

a λ1 λ2 λ3 . . . . . . λN b
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

The Lanczos tridiagonalization of B with the starting vector s
generates at each step k a non-decreasing piecewise constant
distribution function ω(k) , with the nodes being the (distinct)

eigenvalues η
(k)
j of the Lanczos matrix Tk and the weights ω

(k)
j

being the squared first entries of the corresponding normalized
eigenvectors, [Hestenes, Stiefel: ’52].

The distribution functions ω(k)(λ) , k = 1, 2, . . . represent
Gauss-Christoffel quadrature approximations of the distribution
function ω(λ) , [Hestenes, Stiefel: ’52], [Fischer: ’96], [Meurant,

Strakoš: ’06].
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

The Riemann-Stieltjes integral of a function f (λ) defined on a
closed interval < a, b >, where a ≤ λ1, λN ≤ b,

∫ b

a

f (λ) dω(λ) ≡

N∑

j=1

ωj f (λj ) ,

is in step k of the Lanczos tridiagonalization approximated by the
k-th Gauss-Christoffel quadrature rule

k∑

j=1

ω
(k)
j f (η

(k)
j ) .
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

In our case, B = AAT , s = s1 = b/β1 and Tk = Lk L
T
k , where

Lk is the bidiagonal matrix from the GK bidiagonalization of A.

Consider the SVD
Lk = Pk Θk Qk

T ,

Pk = [p
(k)
1 , . . . , p

(k)
k

] , Qk = [q
(k)
1 , . . . , q

(k)
k

] ,

Θk = diag (θ
(k)
1 , . . . , θ

(k)
n ) ,

with the singular values ordered in the increasing order,

0 < θ
(k)
1 < . . . < θ

(k)
k .
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

Then Tk = Lk L
T
k = Pk Θ

2
k P

T
k is the spectral decomposition of

Tk ,

(θ
(k)
` )2 are its eigenvalues (the Ritz values of AAT ) and

p
(k)
` its eigenvectors (which determine the Ritz vectors of AAT ),

` = 1, . . . , k .
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

Consequently, the GK bidiagonalization generates at each step k

the distribution function

ω(k)(λ) with nodes (θ
(k)
` )2 and weights ω

(k)
` = |(p

(k)
` , e1)|

2

that approximates the distribution function

ω(λ) with nodes σ2
j and weights ωj = |(b/β1, uj)|

2 ,

where σ2
j , uj are the eigenpairs of AAT , for j = N, . . . , 1 ,

[Hestenes, Stiefel: ’52], [Fischer: ’96], [Meurant, Strakoš: ’06].

Note that unlike the Ritz values (θ
(k)
` )2, the squared singular

values σ2
j are enumerated in descending order.
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

MatLab demo for the discrete ill-posed problem SHAW(400) ...
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11. Determination of the noise level
Approximation of the Riemann-Stieltjes distribution function

The smallest node and weight in approximation of ω(λ) for the
discrete ill-posed problem SHAW(400):
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11. Determination of the noise level
Estimate based on distribution functions

The distribution function ω(λ):

The large nodes σ2
1, σ

2
2, . . . of ω(λ) are well-separated

(relatively to the small ones) and their weights on average decrease
faster than σ2

1 , σ
2
2 due to the DPC. Therefore the large nodes

essentially control the behavior of the early stages of the
Lanczos process.
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11. Determination of the noise level
Estimate based on distribution functions

Depending on the noise level, the weights corresponding to smaller
nodes are completely dominated by noise, i.e., there exists an
index Jnoise such that

|(b/β1, uj)|
2 ≈ |(bnoise/β1, uj)|

2 , for j ≥ Jnoise .

The weight of the set of the associated nodes is given by

δ2 ≡
N∑

j=Jnoise

|(bnoise/β1, uj )|
2 ≈ 1/β2

1

N∑

j=1

|(bnoise, uj )|
2 = δ2noise .
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11. Determination of the noise level
Estimate based on distribution functions

The distribution functions ω(k)(λ):

At any iteration step, the weight of ω(k)(λ) corresponding to

the smallest node (θ
(k)
1 )2 must be larger than the sum of

weights of all σ2
j smaller than this (θ

(k)
1 )2 , see [Fischer, Freund:

’94] (this result goes back to Chebychev).

As k increases, some (θ
(k)
1 )2 eventually approaches (or becomes

smaller than) the node σ2
Jnoise

, and its weight becomes

|(p
(k)
1 , e1)|

2 ≈ δ2 ≈ δ2noise .
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11. Determination of the noise level
Estimate based on distribution functions

Summarizing:

The weight |(p
(k)
1 , e1)|

2 corresponding to the smallest Ritz value

(θ
(k)
1 )2 of AAT is strictly decreasing. At some iteration step it

sharply starts to (almost) stagnate close to the squared noise
level δ2noise, see [Hnětynková, Plešinger, Strakoš: ’10].

The last iteration before this happens is called the noise
revealing iteration knoise.

Note that computation of |(p
(k)
1 , e1)|

2 can be realized without
forming the SVD of Lk using the shift-invert strategy.
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11. Determination of the noise level
Estimate based on distribution functions

Square roots of the weights |(p
(k)
1 , e1)|

2, k = 1, 2, . . . (left), and
the smallest node and weight in approximation of ω(λ) (right),
SHAW(400) with the noise level δnoise = 10−14:
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11. Determination of the noise level
Estimate based on distribution functions

Square roots of the weights |(p
(k)
1 , e1)|

2, k = 1, 2, . . . (left), and
the smallest node and weight in approximation of ω(λ) (right),
SHAW(400) with the noise level δnoise = 10−4:
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11. Determination of the noise level
Identification of the noise revealing iteration

In order to estimate δnoise, the iteration knoise must be identified.
This can be done by an automated procedure that does not rely
on human interaction.

For example, in our experiments knoise was determined as the first
iteration for which

|(p
(k+1)
1 , e1)|

|(p
(k+1+step)
1 , e1)|

<

(

|(p
(k)
1 , e1)|

|(p
(k+1)
1 , e1)|

)ζ

,

where ζ was set to 0.5 and step was set to 3.
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11. Determination of the noise level
Identification of the noise revealing iteration

Noise level δnoise in the data, iteration knoise, and the estimated
noise level |(p

(knoise+1)
1 , e1)|, for two problems from [Regularization

Toolbox]. The estimates represent average values computed using
1000 randomly chosen vectors bnoise:

SHAW(400)

δnoise 1× 10−14 1× 10−6 1× 10−4 1× 10−2

knoise 16 9 7 4
estimate 1.80× 10−14 1.31× 10−6 1.01× 10−4 1.03× 10−2

ILAPLACE(100,1)

δnoise 1× 10−13 1× 10−7 1× 10−2 1× 10−1

knoise 22 15.30 6.02 2
estimate 9.12× 10−14 1.34× 10−7 1.02× 10−2 1.11× 10−1
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12. Noise vector approximation
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12. Noise vector approximation
Basic formula

In the noise revealing iteration

δnoise ≈ |(p
(knoise+1)
1 , e1)|,

and the bidiagonalization vector sknoise is fully dominated by the
high frequency noise. Thus

bnoise ≈ ‖bnoise‖ sknoise ≈ β1 |(p
(knoise+1)
1 , e1)| sknoise ,

represents an approximation of the unknown noise.

We can subtract the reconstructed noise from the noisy
observation vector b. Hopefully, the noise level in the corrected
system will be lower than in the original one.

What happens if we repeat this process several times?
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12. Noise vector approximation
Noise subtraction

Algorithm: Given A, b; b(0) := b;
for j = 1, . . . , t
• GK bidiagonalization of A with the starting vector b(j−1);
• identification of the noise revealing iteration knoise;

• δ(j−1) := |(p
(knoise)
1 , e1)|;

• bnoise,(j−1) := β1 δ
(j−1) sknoise ; // noise approximation

• b(j) := b(j−1) − bnoise,(j−1); // correction

end;
The accumulated noise approximation is

b̂noise ≡

t−1∑

j=0

bnoise,(j) .
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12. Noise vector approximation
Numerical illustration - SHAW problem

Singular values of A, and spectral coeffs. of the original and
corrected observation vector b(j), j = 1, . . . , 5, SHAW(400) with
the noise level δnoise = 10−4 (knoise = 10 is fixed):
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12. Noise vector approximation
Numerical illustration - SHAW problem

Individual components (top) and Fourier coeffs. (bottom) of
b̂noise, SHAW(400) with the noise level δnoise = 10−4:
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Elephant image deblurring problem: image size 324 × 470 pixels,
problem dimension N = 152280, the exact solution (left) and the
noisy right-hand side (right), δnoise = 3× 10−3:

xexact bexact + bnoise
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Square roots of the weights |(p
(k)
1 , e1)|

2, k = 1, 2, . . . (top) and
error history of LSQR solutions (bottom):
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

The best LSQR reconstruction (left), xLSQR
41 , and the

corresponding componentwise error (right). GK without any
reorthogonalization:

LSQR reconstruction with minimal error, xLSQR
41

Error of the best LSQR reconstruction, |xexact − xLSQR
41
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Singular values of A, and spectral coeffs. of the original and
corrected observation vector b(j), j = 1, . . . , 3, Elephant image
deblurring problem with δnoise = 3× 10−3 (knoise corresponds to
the best LSQR approximation of x):
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13. Open problems

Message:

Using GK, information about the noise can be obtained in a
straightforward and cheap way.

Open problems:

I Large scale problems (determining knoise);

I Behavior in finite precision arithmetic
(GK without reorthogonalization);

I Regularization;

I Denoising;

I Colored noise.
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The full version of our presentations will be available at

http://www.cs.cas.cz/krylov/

Thank you for your kind attention!
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