
On the Way from Matrix to Tensor Computations
Introduction, Basic arithmetics, Tensor decompositions,

Hierarchical formats, and Tensor networks

M. Plešinger with a lot of inspiration from collaboration with

I. Hnětynková, D. Kressner, C. Tobler, J. Žáková,

with special thanks to B. N. Khoromskij, and many other colleagues ...

martin.plesinger@tul.cz

Department of Mathematics, Technical University of Liberec, Liberec

SNA ’19, Ostrava, January 21—25, 2019

1 / 144



Outline of the tutorial

▸ Lecture I

Introduction to tensors

Basic terminology and basic manipulation with tensors

Rank of a tensor

Tensor arithmetics

▸ Lecture II

Basic decompositions of a tensor

Low-rank arithmetics of tensors

Graph interpretation: Tensor networks & Hierarchical formats

Arithmetics of hierarchical Tucker

An example of practical application

[T. G. Kolda, B. W. Bader: Tensor decompositions and
applications, SIAM Review 51(3), pp. 455–500, 2009]

2 / 144



Introduction to tensors

3 / 144



Introduction
The standard tensor definition

A first (and only) definition of a tensor I met at school:

Tensor T of order k is a k1-covariant and k2-contravariant
(k = k1 + k2) multilinear form on linear vector space V over R,

T ∶ V × V ×⋯ × V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k1-times

×V
∗ × V

∗ ×⋯× V
∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k2-times

Ð→ R.

In this way tensors are used in many branches of mathematics and
physics (differential geometry, solid-state physics, continuum
mechanics, general relativity, etc.).

It is something like a matrix, but ...

4 / 144



What is a matrix?
Three (distinct) reference frames

A matrix A can be seen as a mapping between linear vector spaces

A ∶ Rn Ð→ R
m

u z→ w = Au,

as a bilinear form

A ∶ Rn ×Rm Ð→ R

(u, v) z→ f (u, v) = vTAu,

and also as an algebraic vector, a member of linear vectors space

A ∈ Rm×n.

5 / 144



What is a matrix?
Transformations of matrices

Let m = n (A is square). We change the basis in R
n as follows

x = Zx ′, i.e., x z→ x ′ = Z−1x , then

Au = w

A(Zu′) = Zw ′

(Z−1AZ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u′ = w ′
,

f (u, v) = vTAu

f (Zu′,Zv ′) = (Zv ′)TA(Zu′)
f ′(u′, v ′) = v ′

T (ZTAZ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u′
.

We get two different transf’s of A, Az→ Z−1AZ (similarity transf.;
eigenvalues) and Az→ ZTAZ (congruence; quadratic forms), resp.

On the other hand, we can study the matrix itself—e.g.,
decompositions:

A = LU, A = LLT, A = QR, A = XDX−1, A = UΣV T, etc.

6 / 144



Definition of a tensor
... and its ‘justification’

Similarly to matrices, we can observe a tensor from different
perspectives: As a (multi)linear mapping(s) between different
vector spaces, or form on V (and its dual V

∗).

In many applications, however, we are focused more on the
‘interior structure’ of the tensor (e.g., we are looking for some
decomposition), than on its interactions with its ‘surroundigs’.

Definition. Tensor T of order k is a k-way array of real numbers
of the given dimension,

T = (ti1,i2,...,ik) ∈ R
n1×n2×⋯×nk .

Note that ni ≠ nj for i ≠ j , in general, thus we do not need to
distinguish the co- and contravariant indices.

7 / 144



Why tensors?

▸ Tensors in this form was introduced in psychometrics and
chemometrics while analysis of large multidim. arrays of data

▸ The goal is to find some structure in the data (big data) that
allows to analyze (interpret, understand) the data, and
simplifies it in such a way, we can easier manipulate it; c.f.
the singular value decomposition (SVD) in the case of matrix.

▸ The memory consumption while storing the tensor as it is,
scales exponentialy with k , so-called “curse of dimensionality”,

∼ nk where n = max{n1,n2, . . . ,nk}.

▸ We want to employ basic linear algebra tools (matrix
decompositions, etc.).

▸ In the optimal case, we would like to find a structure
(decomposition) that scales linearly with the tensor order k .

8 / 144



Basic terminology

and basic manipulation

with tensors

9 / 144



Order and shape of tensor
Tensors of small orders

By the order of tensor T = (ti1,i2,...,ik) ∈ R
n1×n2×⋯×nk we understood

the number of its indices, i.e., the number k . Tensors of small
orders have special names, for

▸ k = 0 we call them scalars (and denote by α, β, etc.);

▸ k = 1 we call them vectors (and denote by x , y , etc.);

▸ k = 2 we call them matrices (and denote by A, B , etc.);

▸ k ≥ 3 we call them just tensors (and denote by T , S, etc.).

By the dimension, we understood the k-tuple (n1,n2, . . . ,nk). If
▸ k = 2 and n1 = n2, we call them square matrices;

▸ k ≥ 3 and n1 = n2 = ⋯ = nk , we call them cubic tensors.

Moreover, we denote N = ∏k
κ=1 nκ = n1 ⋅ n2 ⋅ ⋯ ⋅ nk .

10 / 144



Tensors and subtensors
General subtensors

Our tensor T is an ordered set of numbers ti1,i2,...,ik ∈ R with indices

iκ ∈ {1,2, . . . ,nκ} ≡ Iκ, for κ = 1,2, . . . ,k ,

or, equivalently, with multiindices

(i1, i2, . . . , ik) ∈ I1 ×I2 ×⋯×Ik .

Let I
′
κ ⊆ Iκ. The subarray of T obtained by employing only the

multiindices in the subset I
′
1 ×I

′
2 ×⋯×I

′
k is called a subtensor.

There are several kinds of subtensors of particular importance, e.g.,
so-called fibres, slices, and co-fibres.

11 / 144



Subtensors: Fibres
Rows, columns, tubes, and the others...

Let T ∈ Rn1×n2×⋯×nk , let for some fixed ℓ

I
′
ℓ = Iℓ = {1,2, . . . ,nℓ}, and I

′
κ = {iκ} for all κ ≠ ℓ.

The associated subtensor is called the ℓ-mode fibre specified by the
(k−1)-tuple of indices (i1, . . . , iℓ−1, iℓ+1, . . . , ik). We denote it

Ti1,...,iℓ−1,☆,iℓ+1,...,ik ∈ R
1×⋯×1×nℓ×1×⋯×1,

it is isomorphic to an nℓ-vector. There is N/nℓ of ℓ-mode fibres.

The ℓ-mode fibres, ℓ = 1,2, . . . ,k are for

▸ k = 2 called the columns and rows, respectively;

▸ k = 3 called the columns, rows, and tubes, respectively.

12 / 144



Subtensors: Fibres
Rows, columns, tubes, and the others...

For k = 3, the ℓ-mode fibres, ℓ = 1,2,3, i.e.,

T☆,i2,i3 ∈ R
n1×1×1, Ti1,☆,i3 ∈ R

1×n2×1, Ti1,i2,☆ ∈ R
1×1×n3

are called the columns, rows, and tubes, respectively.

13 / 144



Subtensors: Slices
Horizontal, lateral, frontal, and the others...

Let T ∈ Rn1×n2×⋯×nk , let for some fixed τ and ß (τ ≠ ß)

I
′
τ = Iτ , I

′
ß = Iß and I

′
κ = {iκ} for all κ ≠ τ and κ ≠ ß.

If τ < ß, the subtensor is called the (τ,ß)-mode slice given by the
(k−2)-tuple (i1, . . . , iτ−1, iτ+1, . . . , iß−1, iß+1, . . . , ik). We denote it

Ti1,...,iτ−1,☆,iτ+1,...,iß−1,☆,iß+1,...,ik ∈ R
1×⋯×1×nτ×1×⋯×1×nß×1×⋯×1,

it is isomorphic to an nτ -by-nß matrix. There is N/(nτ ⋅ nß) of
them.

Sometimes, the fibers and slices are considered to be the vectors
and matrices. Then we can introduce both, the (τ,ß)- and
(ß, τ)-mode slices. Since they are matrices, they are mutually
transposed.

14 / 144



Subtensors: Slices
Horizontal, lateral, frontal, and the others...

For k = 3, the (τ,ß)-mode slices, (τ,ß) = (2,3), (1,3), (1, 2), i.e.,

Ti1,☆,☆ ∈ R
1×n2×n3 , T☆,i2,☆ ∈ R

n1×1×n3 , T☆,☆,i3 ∈ R
n1×n2×1,

are called the horizontal, lateral, and frontal, respectively.

15 / 144



Subtensors: Co-fibres

We see that it is easier to identify the type (i.e., horizontal, lateral,
frontal) slices of 3-way by the ‘missing index’ than by the pair
(τ,ß) of ‘generating indices’.

Thus we also introduce the ℓ-mode co-fibres such that,

I
′
ℓ = {iℓ} and I

′
κ = Iκ for all κ ≠ ℓ,

specified by the single index (iℓ), denoted

T☆,...,☆,iℓ,☆,...,☆ ∈ Rn1×⋯×nℓ−1×1×nℓ+1×⋯×nk .

For k = 3, the ℓ-mode co-fibres = the (τ,ß)-mode slices (ℓ ≠ τ ,
ℓ ≠ ß, τ < ß).

We can continue in a similar manner, but...

16 / 144



Matricization
Unfolding a tensor into a matrix

Collection of all ℓ-mode fibres (handled as vectors) of the given
tensor T into a single matrix T {ℓ} ∈ Rnℓ×(N/nℓ) in the inverse

lexicographical order is called the ℓ-mode matricization. For

T =
6 6 2
7 1 0
7 7 0
3 0 8

6 4 1
3 3 4
9 7 4
0 7 6

✟
✟

✟
✟

✟
✟

✟
✟

∈ R4×3×2, we get

T {1} = [T☆,1,1,T☆,2,1,T☆,3,1,T☆,1,2,T☆,2,2,T☆,3,2] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 6 2 6 4 1
7 1 0 3 3 4
7 7 0 9 7 4
3 0 8 0 7 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

T {2}=
⎡⎢⎢⎢⎢⎢⎣
6 7 7 3 6 3 9 0
6 1 7 0 4 3 7 7
2 0 0 8 1 4 4 6

⎤⎥⎥⎥⎥⎥⎦
, T {3}= [ 6 7 7 3 6 1 7 0 2 0 0 8

6 3 9 0 4 3 7 7 1 4 4 6
].

17 / 144



Generalized matricization
Unfolding a tensor into a matrix

Let T be a k-way tensor and

R = {r1, r2, . . . , rµ}, r1 < r2 < ⋯ < rµ,
C = {c1, c2, . . . , cν}, c1 < c2 < ⋯ < cν ,

such that R ∪ C = {1,2, . . . ,k} and R ∩ C = ∅. Then
T R = T {r1,r2,...,rµ} ∈ RnR×nC , nR =∏

µ

i=1
ri , nC =∏

ν

j=1
cj .

The entry ti1,i2,...,ik of T is in the matrix T R in the row and
column specified by multiindices

(r1, r2, . . . , rµ) and (c1, c2, . . . , cν), respectively.

Rows and columns are in T R sorted in the inverse lexicographical
order w.r.t. their multiindices.

18 / 144



Generalized matricization
Examples

Clearly, in general (T R)T = T C .

For our 4 × 3 × 2 tensor,

T {1} =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 6 2 6 4 1
7 1 0 3 3 4
7 7 0 9 7 4
3 0 8 0 7 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (T {2,3})T,

T {2} =
⎡⎢⎢⎢⎢⎢⎣
6 7 7 3 6 3 9 0
6 1 7 0 4 3 7 7
2 0 0 8 1 4 4 6

⎤⎥⎥⎥⎥⎥⎦
= (T {1,3})T,

T {3} = [ 6 7 7 3 6 1 7 0 2 0 0 8
6 3 9 0 4 3 7 7 1 4 4 6

] = (T {1,2})T.
But there are two more matricizations...

19 / 144



Generalized matricization
Examples

The last two case for 3-way tensor are for R = {1,2,3} and ∅,

T {1,2,3} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1,1,1
t2,1,1
t3,1,1
t4,1,1
t1,2,1
t2,2,1
t3,2,1
t4,2,1
t1,3,1
t2,3,1
t3,3,1
t4,3,1

t1,1,2
t2,1,2
t3,1,2
t4,1,2
t1,2,2
t2,2,2
t3,2,2
t4,2,2
t1,3,2
t2,3,2
t3,3,2
t4,3,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
7
7
3

6
1
7
0

2
0
0
8

6
3
9
0

4
3
7
7

1
4
4
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (T ∅)T ≡ vec(T ).
We call this

↑
the vectorization

of a tensor (or matrix).

20 / 144



Generalized matricization
Matricization–vectorization relation

Recall that the ℓ-mode matricization is a matrix that contain the
ℓ-mode fibres as columns (particularly sorted).

The rows of ℓ-mode matricization are then vectorizations of
ℓ-mode co-fibres.

In our case, columns of T {1} are the 1-mode fibres (columns) of T ,

T {1} = [T☆,1,1,T☆,2,1,T☆,3,1,T☆,1,2,T☆,2,2,T☆,3,2].
and rows of T {1} (i.e., transposed columns of T {2,3}) are the
transposed vectorizations of the 1-mode co-fibrer (i.e., actually the(2,3)-slices (the horizontal slices)) of T .

21 / 144



Note on transposition

The matrix transposition

A ∈ Rm×n z→ AT ∈ Rn×m

exchanges the roles of columns (1-mode) and rows (2-mode fib’s).

Tensors can be manipulated in a similar fashion, in general, by an
arbitrary permutation of roles of individual fibres. Let

Π = ( 1 2 ⋯ k

π(1) π(2) ⋯ π(k) ) ,
then

T ∈ Rn1×n2×⋯×nk z→ T Π ∈ Rnπ(1)×nπ(2)×⋯×nπ(k) ,

(T Π)i1,i2,...,ik = tiπ(1),iπ(2),...,iπ(k) .
22 / 144



Norm and scalar product of tensors

We use the simplest available norm

∥T ∥ = (∑n1
j1=1
∑

n2
j2=1
⋯∑nk

jk=1
∣tj1,j2,...,jk ∣2)

1
2 = (vec(T )Tvec(T )) 12

which directly generalizes the standard
● Euclidean norm of vectors and
● Frobenius norm of matrices.

Moreover, it is induced by the inner product

⟨T ,S⟩ = ∑n1
j1=1
∑

n2
j2=1
⋯∑nk

jk=1
sj1,j2,...,jk ⋅ tj1,j2,...,jk = vec(S)Tvec(T )

which directly generalizes the standard
● Euclidean scalar product of vectors ⟨x , y⟩ = yTx and
● commonly used scalar prod. of matrices ⟨A,B⟩ = trace(BTA).

23 / 144



Rank of a tensor

24 / 144



Rank of a matrix
Let start gently...

What is the rank of a matrix A ∈ Rm×n?

▸ The order of the largerst nonzero minor of A ;-).

▸ The maximal number of linearly independent columns of A.

▸ The maximal number of linearly independent rows of A.

▸ The minimal number of pairs (xj , yj) ∈ Rm ×Rn, such that

A = x1yT1 + x2yT2 +⋯ = ∑̺
x̺y

T
̺ ,

i.e., the length of the shortest dyadic expansion of A.

Note that the SVD of A serves the shortest dyadic expansion with
mutually orthogon(norm)al x̺’s and y̺’s.

25 / 144



Number of linearly independent fibres...
The ℓ-rank

Since columns and rows are the 1-mode and 2-mode fibres of a
matrix, there is a straightforward generalization:

The ℓ-mode rank of the tensor T is the maximal number of linearly
independent ℓ-mode fibres, i.e.,

rank{ℓ}(T ) ≡ rank(T {ℓ}), T {ℓ} ∈ Rnℓ×(N/nℓ), N =∏
k

κ=1
nκ.

Since T {ℓ} is a matrix, whose rows are transposed vectorizations of
ℓ-mode co-fibres, we get:

the maximal number of linearly independent ℓ-mode fibres

= the maximal number of linearly independent ℓ-mode co-fibres.

Recall that for k = 2 (in the matrix case), the 1-mode co-fibres are
the 2-mode fibres (rows) and vice versa.

26 / 144



Number of linearly independent fibres...
The vector rank of tensor

Consequently, for ℓ ≠ ß, there is no direct relation between

rank{ℓ}(T ) and rank{ß}(T ).
The different-mode ranks may be different. Therefore we introduce
the vector rank of the tensor,

Ð→
rank(T ) ≡ (rank{1}(T ), rank{1}(T ), . . . , rank{k}(T )).

For example

T = 1 0
0 1

1 0
0 1

✟
✟

✟
✟

✟
✟

✟
✟

∈ R2×2×2 is of
Ð→
rank(T ) = (2,2,1).

27 / 144



Number of linearly independent fibres...
The vector rank of tensor

Consider now three of such vectors but of diferent dimensions,

T = 1 0
0 1

1 0
0 1

✟
✟

✟
✟

✟
✟

✟
✟

∈ R2×2×2 and similarly S ∈ R3×3×3, F ∈ R4×4×4,

i.e.,
Ð→
rank(T ) = (2,2,1), Ð→rank(S) = (3,3,1), Ð→rank(F) = (4,4,1).

Their permutations and direct sum (i.e., block-diagonal assembly),

diag3(T ,S( 13 2
1
3
2
),F(

1
2
2
3
3
1
)) ≡

T ⊕S( 13 2
1
3
2
)⊕F( 12 2

3
3
1
) = ,

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

✟

T
SΠ1

FΠ2

is of vector rank (2,2,1)+(3,1, 3)+(1, 4, 4)=(6, 7, 8).
28 / 144



Shortest polyadic expansion
Polyadic rank of a tensor

Any matrix A, r ≡ rank(A) can be written in the dyadic expansion,

A = x1yT1 + x2yT2 +⋯ = ∑
r

̺=1
x̺y

T
̺ , where

A̺ ≡ x̺y̺
T = , (A̺)i ,j = (xρ)i ⋅ (yρ)j

is the rank-one matrix—the outer product of two vectors

This motivates the polyadic expansion of k-way tensor as the sum
of rank-one terms—the outer products of k vectors; e.g., for k = 3

T̺ ≡ (x̺, y̺, z̺)⊗, where x̺ ∈ Rn1 , y̺ ∈ Rn2 , z̺ ∈ Rn3 ,

(T̺)i1,i2,i3 = (xρ)i1 ⋅ (yρ)i2 ⋅ (zρ)i3 .
29 / 144



Shortest polyadic expansion
Polyadic rank of a tensor

Then the polyadic expansion takes form T = ∑̺(x̺, y̺, z̺)⊗,

✟
✟

✟
✟

✟
✟

✟
✟

=

⊗

✟

✟

✟

✟

✟

✟

✟

✟
✟
✟

✟
✟

✟
✟

✟
✟

+ . . . +

⊗

✟

✟

✟

✟

✟

✟

✟

✟
✟
✟

✟
✟

✟
✟

✟
✟

.

It represents our first kind of tensor decomposition into three
matrices X = [x1, x2, . . .] ∈ Rn1×?, Y = [y1, y2, . . .] ∈ Rn2×?,
Z = [z1, z2, . . .] ∈ Rn3×?.

This decomposition is intensively studied and it is known under
names CanDeComp (Canonic DeComposition), ParaFac (Paralel
Factorization), or CP decomposition (CanDeComp–ParaFac).

30 / 144



Shortest polyadic expansion
Polyadic rank of a tensor

In the case of matrices:

▸ The polyadic expansion can be done in such a way that both
X ∈ Rn×r and Y ∈ Rm×r have orthogon(norm)al columns (via
the SVD).

▸ Rank of A is the minimal number of terms (length of the
shortest dyadic exp.).

▸ The Eckart–Young–Mirsky theorem shows that the difference
between A and its best approximation obtained by using only
q dyadic terms, q < r = rank(A), is in the norm equal to
σq+1(A), i.e., this approximation problem has (well defined)
minimum.

What about tensors?

31 / 144



Shortest polyadic expansion
Polyadic rank of a tensor

We can play with the orthogonality by employing QR decomp’s of
X , Y , Z , etc. It will be briefly mentioned later.

The number of rank-one terms is bounded by N, thus there is the
minimal number, defining the polyadic rank,

max
ℓ=1,2,...,k

rank{ℓ}(T ) ≤ polyrank(T ) ≤ nnz(T ) ≤ N = n1 ⋅ n2 ⋅ ⋯ ⋅ nk .
This rank, however, is not robust. Let

X = [x ′, x ′, x ′′] ∈ Rn1×3, Y = [y ′, y ′′, y ′] ∈ Rn2×3, Z = [z ′′, z ′, z ′] ∈ Rn3×3,

and rank(X ) = rank(Y ) = rank(Z) = 2. Consider
T = (x ′, y ′, z ′′)⊗ + (x ′, y ′′, z ′)⊗ + (x ′′, y ′, z ′)⊗ ,
Tε =

1

ε
(x ′ + εx ′′, y ′ + εy ′′, z ′ + εz ′′)⊗ − 1

ε
(x ′, y ′, z ′)⊗ , then

∥T − Tε∥ = ε∥(x ′′, y ′′, z ′)⊗ + (x ′′, y ′, z ′′)⊗ + (x ′, y ′′, z ′′)⊗ + ε(x ′′, y ′′, z ′′)⊗∥.
[P. Paatero, J. of Chemometrics 14(3), pp. 285–299, 2000].

32 / 144



Sum of rank-one terms
Another generalization of dyadic expansion

Note that rank-one (rank-at-most-one) terms

(x̺, y̺)⊗ = xyT, (x̺, y̺, z̺)⊗, x̺ ∈ R
n1 , y̺ ∈ R

n2 , z̺ ∈ R
n3,

form submanifolds within R
n1×n2 and R

n1×n2×n3 , respectively.

We can take another suitable submanifold and its members
consider to be the rank-one terms. For example,

T̺ = (x̺,M̺)⊗, where x̺ ∈ R
n1 , M̺ ∈ R

n2×n3 ,

and (T̺)i1,i2,i3 = (x̺)i1 ⋅ (M̺)i2,i3 .
Then rank of T can be defined as the length of shortest sum

T = ∑̺
T̺ = ∑̺

⊗

✟

✟

✟

✟

✟
✟

✟
✟

✟
✟

✟
✟

; this rank = rank{1}(T ) = rank(T {1}).

33 / 144



Another example
4-way tensor & the Kronecker product

Let T ∈ Rn1×n2×n3×n4 and T = ∑̺ T̺, where

T̺ ≡ (K̺,M̺)⊗ such that (T̺)i1,i2,i3,i4 = (K̺)i1,i2 ⋅ (M̺)i3,i4,
and K̺ ∈ Rn1×n2 , M̺ ∈ Rn3×n4 .

The length of the shortest sum can be observed after rearraging to

T {1,2} = ∑̺
T {1,2}̺ = ∑̺

vec(K̺)(vec(M̺))T ∈ R(n1⋅n2)×(n3 ⋅n4);
it is the rank of this matrix, in general rankR(T ) ≡ rank(TR).
Note another rearranging gives

T {1,3} ∈ R(n1 ⋅n3)×(n2 ⋅n4), T {1,3} = ∑
rank{1,2}(T )

̺=1 M̺⊗K̺ ,

where ⊗ is the Kronecker product of matrices.

34 / 144



Note on Kronecker product

For matrices, the standard matrix and Kronecker products we have

(AB)⊗ (CD) = (A⊗ C)(B ⊗D).
Thus, if any two of the following three matrices

A, C , E = A⊗ C

are invertible, then the third is also invertible.

We can intepret E as the {1,3}-matricization of a 4-way tensor E ,
i.e., E = E{1,3} = A⊗ C . Then its {1,2}-matricization takes form

E{1,2} = vec(A)(vec(C))T
All three E , E{1,3}, E{1,2} represent the same rank-one object (just
differently rearranged) in the given submanifold of 4-way tensors.

But E{1,3} may be invertible whereas rank(E{1,2}) = 1 always.

35 / 144



Final note on ranks
For a given tensor T , we have

▸ rank{ℓ}(T ) ≡ rank(T {ℓ}) for ℓ = 1,2, . . . ,k ,

▸
Ð→
rank(T ) ≡ (rank{1}(T ), rank{2}(T ), . . . , rank{k}(T )),

▸ rankR(T ) ≡ rank(TR) for R ⊆ {1,2, . . . ,k},
▸ clearly

{rank{ℓ}(T ) , ℓ = 1,2, . . . ,k} ⊆ {rankR(T ) , R ⊆ {1,2, . . . ,k}} ,
▸ polyrank(T ):

max
R⊆{1,2,...,k}

rankR(T ) ≤(∗) polyrank(T ) ;
(∗) ((x ′, y ′, z ′′)⊗ + (x ′, y ′′, z ′)⊗ + (x ′′, y ′, z ′)⊗){1,2}

= [(y ′ ⊗ x ′), (y ′′ ⊗ x ′) + (y ′ ⊗ x ′′)][z ′′, z ′]T.
36 / 144



Tensor arithmetics

37 / 144



Basic operations
Linear combinations, direct sum, outer product

We already know some basic operations.

▸ Since tensors of the given fixed dimensions form a linear
vector space, we can do componentwisely

αT , T + S, αT + β S, ∑ℓ
αℓ Tℓ .

▸ We can do the direct sum of tensors of the same(?!) order k

T ⊕ S = diagk(T ,S) ∈ R(n1+m1)×(n2+m2)×⋯×(nk+mk).

▸ We can do the outer product (a.k.a. tensor or Kronecker p.)
of any two (or more) tensors

S ⊗ T = (T ,S)⊗ ∈ Rn1×n2×⋯×nk×m1×m2×⋯×mt

(S ⊗ T )i1,i2,...,ik ,j1,j2,...,jt = (T )i1,i2,...,ik ⋅ (S)j1,j2,...,jt
(S ⊗ T ){i1,i2,...,ik} = vec(T ) (vec(S))T

38 / 144



Multiplication: Tensor-matrix (TM) product

The basic structure of TM is the same as for matrices: Sums of
products of individual entries of given fibres and col’s or rows. Let

T ∈ Rn1×n2×⋯×nk , S ∈ Rc×nℓ , M ∈ Rnℓ×d .

The ℓ-mode (pre-/post-)multiplication of tensor by a matrix

S ×ℓ T ∈ Rn1×⋯×nℓ−1×c×nℓ+1×⋯×nk , T ℓ×M ∈ Rn1×⋯×nℓ−1×d×nℓ+1×⋯×nk

is defined as

(S ×ℓ T )i1,...,iℓ−1,j,iℓ+1,...,ik ≡ ∑nℓ
iℓ=1
(S)j ,iℓ ⋅ (T )i1,...,iℓ−1,iℓ,iℓ+1,...,ik ,

(T ℓ×M)i1,...,iℓ−1,j,iℓ+1,...,ik ≡ ∑nℓ
iℓ=1
(T )i1,...,iℓ−1,iℓ,iℓ+1,...,ik ⋅ (M)iℓ,j .

Clearly T ℓ×M =MT ×ℓ T , thus we focus on the pre-multiplication.

(The so-called Einstein’s notation omits the ‘sum’ signs.)

39 / 144



Multiplication: Tensor-matrix (TM) product

We can see it as MV-product of S with all the ℓ-mode fibres, i.e.,

(S ×ℓ T ){ℓ} = ST {ℓ} ∈ Rc×((∏κ=1k
nκ)/nℓ).

Tensor-matrix product is associative in the following two meanings

P ×ℓ (S ×ℓ T ) = (PS) ×ℓ T
P×τ(S×ßT ) = S×ß(P×τT ), for τ ≠ ß.

Multiplication by two matrices in two different modes can be again
rearranged by matricization as follows:

(P ×τ (S ×ß T )){τ,ß} = (S ⊗ P)T {τ,ß} or (P ⊗ S)T {τ,ß}
for τ < ß, or ß > τ , respectively (recall the inverse lexicographical

ordering of multiindices while matricization).

40 / 144



Linear transformation of a tensor
Employing the associativity while multiplication in different modes,
we get for

T ∈ Rn1×n2×⋯×nk , Sκ ∈ Rcκ×nκ , κ = 1,2, . . . ,k ,

(S1,S2, . . . ,Sk ∣T ) ≡ S1 ×1 (S2 ×2 (⋯ (Sk ×k T )⋯ )) ∈ Rc1×c2×⋯×ck

a general linear transformation of T . In the post-mult. fashion it
takes form (T ∣M1,M2, . . . ,Mk) for Mκ ∈ Rnκ×dκ .

A single tensor-matrix product can be written as

P×ℓ T = (In1 , . . . , Inℓ−1 ,P , Inℓ+1 , . . . , Ink ∣T ).
Employing vectorization gives

vec((S1,S2, . . . ,Sk ∣T )) = (Sk ⊗⋯⊗ S2 ⊗ S1)vec(T );
recall that vec(T ) = T {1,2,...,k}.

41 / 144



Note on tensors of order two
Matrix-matrix product treated as tensor-matrix

First note that A{1} = A, A{2} = AT. Since:

(S1 ×1 A){1} = S1A{1}, then S1 ×1 A = S1A,
(S2 ×2 A){2} = S2A{2}, then S2 ×2 A = AST

2 ,

(S1,S2 ∣A) = S1 ×1 (S2 ×2 A), then (S1,S2 ∣A) = S1AST
2 ,

for the pre-multiplication and

A 1×M1 =MT
1 ×1 A, then A 1×M1 =MT

1 A,

A 2×M2 =M
T
2 ×2 A, then A 2×M2 = AM2,

(A ∣M1,M2) = (A 1×M1) 2×M2, then (A ∣M1,M2) =MT
1 AM2,

for the post-mutliplication.

For tensors of order one (vectors): S1 ×1 v = S1v , v 1×M1 =MT
1 v .

42 / 144



Tensor-tensor (TT) product a.k.a. Contraction
Let T and F be tensors of orders k and s,

T ∈ Rn1×n2×⋯×nk , F ∈ Rm1×m2×⋯×ms , and nℓ = mß.

Then their (ℓ,ß)-mode product is a tensor of order (k + s − 2),
T ×(ℓ,ß) F ∈ Rn1×⋯×nℓ−1×nℓ+1×⋯×nk×m1×⋯×mß−1×mß+1×⋯×ms ,

where (T ×(ℓ,ß) F)i1,...,iℓ−1,iℓ+1,...,ik ,j1,...,jß−1,jß+1,...,js
= ∑

nℓ
α=1
(T )i1,...,iℓ−1,α,iℓ+1,...,ik ⋅ (F)j1,...,jß−1,α,jß+1,...,js .

The other available product is

F×(ß,ℓ)T = (T ×(ℓ,ß)F)Π, where Π = ( 1
k

2
k+1

⋯

⋯ k+s−2 1 2
⋯

⋯

k+s−2
k−1 ).

Alternatively

(T ×(ℓ,ß) F){1,2,...,k−1} = (T {ℓ})TF{ß},
(F ×(ß,ℓ) T ){1,2,...,s−1} = (F{ß})TT {ℓ}.

43 / 144



Tensor-tensor (TT) product a.k.a. Contraction
Analogously, we can introduce mutiplication (contraction) in two
pairs of indices at once. For

T ∈ Rn1×n2×⋯×nk , F ∈ Rm1×m2×⋯×ms , and nℓ = mß, nτ = mσ, ℓ < τ,

we get the (k + s − 4)-way tensor

T ×((ℓ,τ),(ß,σ)) F ,
with entries (depending on relations between ß and σ) either / or

∑αβ
(T )i1,...,iℓ−1,α,iℓ+1,...,iτ−1,β,iτ+1,...,ik ⋅ (F)j1,...,jß−1,α,jß+1,...,jσ−1,β,jσ+1,...,js ,

∑αβ
(T )i1,...,iℓ−1,α,iℓ+1,...,iτ−1,β,iτ+1,...,ik ⋅ (F)j1,...,jσ−1,β,jσ+1,...,jß−1,α,jß+1,...,js .

Again,

(T ×((ℓ,τ),(ß,σ)) F){1,2,...,k−2} = (T {ℓ,τ})T(FΠ){ß,σ},
and Π = Id or (⋯

⋯

σ
ß
⋯

⋯

ß
σ
⋯

⋯
). Similarly for several pairs of indices.

44 / 144



MM- and TM-products as TT-products
If matrices treated as tensors

Note that TM and TT have different ordering of indices,

S ×ℓ T = (S ×(2,ℓ) T )( 1ℓ 2
1
⋯
⋯

ℓ
ℓ−1

ℓ+1
ℓ+1

⋯
⋯
)
= (T ×(ℓ,2) S)(⋯⋯ ℓ−1

ℓ−1
ℓ

ℓ+1
⋯
⋯

k−1
k

k
ℓ
)
,

T ℓ×M =MT ×ℓ T = (M ×(1,ℓ) T )Π = (T ×(ℓ,1)M)Π.
For MM-products we get

AB = A ×(2,1) B = AT ×(1,1) B = A ×(2,2) BT = AT ×(1,2) BT

= (B ×(1,2) A)Π = (B ×(1,1) AT)Π = (BT ×(2,2) A)Π = (BT ×(2,1) AT)Π
= (BTAT)T

where Π = (12 2
1). Similarly for

ATB = A×(1,1)B = . . . , ABT = A×(2,2)B = . . . , ATBT = A×(1,2)B = . . . .

45 / 144



Relation between outer and tensor product
Recall that a vector can be interpreted as a single-column matrix, a
matrix as a single-front-slice 3-way tensor, etc.

We formalize that in the form of ‘uparrow’ operator

↑ ∶ v ∈ Rn z→ v ↑ ∈ Rn×1,

A ∈ Rn×d z→ A↑ ∈ Rn×d×1,

↑2 = ↑↑ ∶ v ∈ Rn z→ v ↑↑ ∈ Rn×1×1,

etc.

Then for a k-way tensor T and s-way tensor F we have

(T ,F)⊗ = (T ↑) ×(k+1,s+1) (F↑).
Note again:
The outer product is a.k.a. tensor and Kronecker product.
The tensor (TT) product is a.k.a. contraction.

46 / 144



Basic decompositions of a tensor

47 / 144



Singular value decomposition (SVD)
Let start with matrices

Let A ∈ Rm×n be a matrix of rank r = rank(A), then
A = UΣV T = (U,V ∣Σ) = U ′Σ′V ′T = (U ′,V ′ ∣Σ′)

where U−1 = UT, U = [U ′ , U ′′ ] ∈ Rm×m, U ′ ∈ Rm×r ,

where V −1 = V T, V = [V ′ , V ′′ ] ∈ Rn×n, V ′ ∈ Rn×r ,

Σ = [ Σ′ 0
0 0

] ∈ Rm×n, Σ′ = diag(σ1, σ2, . . . , σr) ∈ Rr×r ,

σ1 ≥ σ2 ≥ ⋯ ≥ σr > 0.
A

=

U Σ

Σ′

U ′
V ′

T

0 0

0

V T

=

U ′ Σ′ V ′
T

48 / 144



SVDs of ℓ-mode matricizations

Let T ∈ Rn1×n2×⋯×nk of
Ð→
rank(T ) ≡ (r1, r2, . . . , rk), where

rℓ = rank{ℓ}(T ) = rank(T {ℓ}), T {ℓ} ∈ Rnℓ×(N/nℓ), N = n1⋅n2⋅⋯ ⋅nk .
Consider then the SVDs

T {ℓ} = UℓΣℓV
T
ℓ = U

′
ℓΣ
′
ℓV
′
ℓ
T

where Uℓ = [U ′ℓ , U ′′ℓ ] ∈ Rnℓ×nℓ , U ′ℓ ∈ R
nℓ×rℓ ,

Σ′ℓ = diag(σ1,ℓ, σ2,ℓ, . . . , σrℓ,ℓ) ∈ Rrℓ×rℓ , σ1,ℓ ≥ σ2,ℓ ≥ ⋯ ≥ σrℓ,ℓ > 0.
Thus

[ U ′ℓ
TT {ℓ}

U ′′ℓ
TT {ℓ}

] = Uℓ
TT {ℓ} = ΣℓV

T
ℓ = [ Σ′ℓV

′
ℓ
T

0
] .

49 / 144



SVDs of ℓ-mode matricizations

Clearly, this is the ℓ-mode product,

(Uℓ
T ×ℓ T ){ℓ} = Uℓ

TT {ℓ} = ΣℓV
T
ℓ = [ Σ′ℓV

′
ℓ
T

0
] ∈ Rnℓ×(N/nℓ),

and (U ′ℓT ×ℓ T ){ℓ} = U ′ℓTT {ℓ} = Σ′ℓV ′ℓT ∈ Rrℓ×(N/nℓ).

For a three-way tensor and ℓ = 1:

×1

✟
✟

✟
✟

✟
✟

✟
✟

=

✟

✟

✟

✟

✟

✟✟

✟✟

✟✟

✟✟

✟✟

✟
✟

✟
✟

✟
✟

✟
✟

Note that mutliplication by other Ußs in the other modes (ß ≠ ℓ)
does not involve these already made zero co-fibres.

50 / 144



Tucker decompostion a.k.a. high-order SVD (HOSVD)

Finally we get for T ∈ Rn1×n2×⋯×nk a linear transformation

(UT
1 ,U

T
2 , . . . ,U

T
k ∣T ) = diagk(CT ,0) ∈ Rn1×n2×⋯×nk ,

where the subtensor

CT = (U ′1T,U ′2T, . . . ,U ′kT ∣T ) ∈ Rr1×r2×⋯×rk

is called the Tucker core of tensor T . Since Uℓ’s are invertible and
orthogonal the first equation can be rearranged to

T = (U1,U2, . . . ,Uk ∣diagk(CT ,0)) = (U ′1,U ′2, . . . ,U ′k ∣CT )
that is called the Tucker decomposition or HOSVD of tensor T .

[L. R. Tucker, Psychometrika 31(3), pp. 279–311, 1966]

51 / 144



Tucker decompostion a.k.a. high-order SVD (HOSVD)

Thus, for T with
Ð→
rank(r1, r2, . . . , rk) we have decomposition

T = (U ′1,U ′2, . . . ,U ′k ∣CT ), CT ∈ R
r1×r2×⋯×rk ,

U ′ℓ ∈ R
nℓ×rℓ , U ′ℓ

T
U ′ℓ = Irℓ .

✟
✟

✟
✟

✟
✟

✟
✟

=

×1
✟✟

✟✟

✟✟

✟✟ ×2×3 ✟✟

✟
✟

Moreover, the ℓ-mode co-fibres of CT are sorted in a nonincreasing
sequence w.r.t. their norms equal to σ1,ℓ, σ2,ℓ, . . . , σrℓ,ℓ.

This allows to generalize the Eckart–Young–Mirsky theorem.
Compare with the SVD.

52 / 144



Polyadic expansion as the CP decompostion
Recall the polyadic decompostion of T

✟
✟

✟
✟

✟
✟

✟
✟

=

⊗

✟

✟

✟

✟

✟

✟

✟

✟
✟
✟

✟
✟

✟
✟

✟
✟

+ . . . +

⊗

✟

✟

✟

✟

✟

✟

✟

✟
✟
✟

✟
✟

✟
✟

✟
✟

.

Collecting all the particular vectors into matrices

X1 ∈ R
n1×r , X2 ∈ R

n2×r , . . . Xk ∈ R
nk×r

and using an “identity-like” cubic tensor of order k and dim’s r ,

Ir ,k =

✟
✟

✟
✟

✟
✟

✟
✟

1
1

1
1

1
1

∈ Rr×r×⋯×r , we get

T = (X1,X2, . . . ,Xk ∣Ir ,k) .
53 / 144



Comparison of both basic decompositions
Tucker decomposition (HOSVD)

T = (U ′1,U ′2, . . . ,U ′k ∣CT )
▸ Matrices U ′ℓ with orthonormal columns (+)
▸ Different numbers of columns equal to rank{ℓ}(T ) (±)
▸ Core of dimensions equal to

Ð→
rank(T ) with the norm

“accumulated” in leading principal corner (+)
CP decoposition (CanDeComp, ParaFac)

T = (X1,X2, . . . ,Xk ∣Ir ,k)
▸ Matrices Xℓ may have linearly dependent columns (−)
▸ The same number of columns equal to polyrank(T ) (±)
▸ “Core tensor” is cubic with very simple structure; so simple it
need not be stored (+ + +)

Note that both decompostitions have similar structure—an inner
core tensor of (typically?) smaller dimensions than T , surrounded
by k matrices, also called leaves (from graph theory).

54 / 144



Low-rank arithmetics of tensors

55 / 144



Let start with matrices. SVD (re)compression

Let A ∈ Rm×n be a (low-rank) matrix given in the form of product
of two thin matrices A = XY T, or, in more general case of three

A = XSY T, X ∈ Rm×p, m ≫ p, S ∈ Rp×q, Y ∈ Rn×q , n≫ q.

Our goal is to compute its SVD without evaluating A:
Step 1: Compute economic QR decompositions of thin X and Y

X = QXRX , QX ∈ R
m×rX , RX ∈ R

rX×p, rX = rank(X ),
Y = QYRY , QY ∈ R

n×rY , RY ∈ R
rY ×q, rY = rank(Y ).

Thus A = QXWQY
T where W = RXSRY

T ∈ RrX×rY .
Step 2: Compute the economic SVD of the small matrix W

W = U ′WΣ′WV ′W
T
, U ′W ∈ R

rX×r , Σ′W ∈ R
r×r , V ′W ∈ R

rY ×r .

Thus A = (QXU
′
W )Σ′W (QYV

′
W )T.

56 / 144



Sum of two low-rank matrices

Let A,B ∈ Rm×n be two low-rank matrices given the form of their
economic SVDs,

A = U ′AΣ
′
AV
′
A
T
, B = U ′BΣ

′
BV
′
B
T
,

with rA = rank(A), rB = rank(B).
Then

M = ϕA +ψB = [U ′A , U ′B ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X∈Rm×(rA+rB )

[ ϕΣ′A 0
0 ψΣ′B

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S∈R(rA+rB )×(rA+rB )

[V ′A , V ′B ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y ∈Rn×(rA+rB )

T.

Compression then serves the economic SVD of M.

57 / 144



Product of low-rank matrix with another matrix

Let A ∈ Rm×n be a low-rank matrix given the form of its economic
SVD,

A = U ′AΣ
′
AV
′
A
T
.

If also B is a low-rank matrix given similarly, then

M = AB = U ′A°
QX

(Σ′A(V ′AT
U ′B)Σ′B)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

W ∈RrA×rB

V ′B°
QY

T.

If B is a general matrix, then

M = AB = U ′A°
QX

Σ′A°
RXS

(BTV ′A)´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Y

T.

Compression (which is already partially done) then serves the
economic SVD of M.

58 / 144



And similarly for tensors: Compression
Let

T = (X1,X2, . . . ,Xk ∣S) ∈ Rn1×n2×⋯×nk , S ∈ Rp1×p2×⋯×pk , nℓ ≫ pℓ

(e.g. the CP decomp. / polyadic exp., or another similar product).
Step 1: Compute k economic QR decomp’s of thin Xℓ = QℓRℓ,

(X1,X2, . . . ,Xk ∣S) = (Q1,Q2, . . . ,Qk ∣ (R1,R2, . . . ,Rk ∣S)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
W

).

Step 2: Compute the Tucker decomposition of small tensor W,

W = (U ′1,W ,U ′2,W , . . . ,U ′k,W ∣CW).
This gives

T = (Q1U
′
1,W´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

U′
1,T

,Q2U
′
2,W´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

U′
2,T

, . . . ,QkU
′
k,W´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

U′
k,T

∣ CW°
CT

)

the Tucker decomposition of large tensor T .
59 / 144



Sum of two tensors

Let T ,F ∈ Rn1×n2×⋯×nk in Tucker form

T = (U ′1,T ,U ′2,T , . . . ,U ′k,T ∣CT ), F = (U ′1,F ,U ′2,F , . . . ,U ′k,F ∣CF).
Then

E = ϕT +ψF = ( [U ′1,T ,U ′1,F ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X1

, . . . , [U ′k,T ,U ′k,F ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Xk

∣ diagk(ϕCT , ψCF)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

).

The compression then yields the Tucker decomposition of E .

Cost: Instead of nk of sums of two number, we need to do:

▸ k-times the economic QR decomposition of n × r matrix;
▸ k-times the product of (r×k)-tensor with (r × r)-matrix;
▸ one Tucker decompostion of (r×k)-tensor;
▸ k-times the product of (n × r)-matrix with (r × r)-matrix.

(Here n = max{n1,n2, . . . ,nk} and r = max{r1, r2, . . . , rk}.)
60 / 144



Tensor matrix product

Let T , ∈ Rn1×n2×⋯×nk in Tucker form

T = (U ′1,T ,U ′2,T , . . . ,U ′k,T ∣CT ), andM ∈ Rm×nℓ

Then
E =M ×ℓ T = (U ′1,T , . . . ,MU ′ℓ,T´¹¹¹¹¹¸¹¹¹¹¹¹¶

Xℓ

, . . . ,U ′k,T ∣CT ).

The compression then yields the Tucker decomposition of E .

Cost: Instead of nk−1 of MV products, we need to do:

▸ r -times the MV product;
▸ one economic QR decomposition of n × r matrix;
▸ one Tucker decompostion of (r×k)-tensor;
▸ one product of (r×k)-tensor with (r × r)-matrix;
▸ k-times the product of (n × r)-matrix with (r × r)-matrix.

61 / 144



Note on norm and scalar product
Recall that

⟨T ,F⟩ = vec(F)Tvec(T ), ∥T ∥ = (⟨T ,T ⟩) 12 ,
T = (U ′1,T ,U ′2,T , . . . ,U ′k,T ∣CT ),

vec(T ) = (U ′k,T ⊗⋯⊗U ′2,T ⊗U ′1,T )vec(CT ),
and similarly for F . Then ⟨T ,F⟩

= vec(CF)T(U ′k,F ⊗ . . .⊗U ′1,F)T(U ′k,T ⊗ . . . ⊗U ′1,T )vec(CT )
= vec(CF)T((U ′1,FTU ′k,T )⊗⋯⊗ (U ′1,FTU ′k,T ))vec(CT )
= vec(CF)T vec((U ′1,FTU ′k,T ), . . . , (U ′1,FTU ′k,T ) ∣CT )

but also

= vec((U ′1,T TU ′k,F), . . . , (U ′1,T TU ′k,F) ∣CF)T vec(CT )
one of the last two lines needs to be evaluated (note that one core
may be smaller than the other).

62 / 144



Why to do such complicated arithmetics?
Consider the following problem

A (X ) = B, where A ∈L (Rn1×n2×⋯×nk ,Rn1×n2×⋯×nk )
and B are given and the goal is to find X .

For example: The Lyapunov operator on R
n×n,

A (X ) = AX + XAT, vec(A (X )) = (I ⊗A +A⊗ I)vec(X ).
For rank-one rhs B = bbT, b ≠ 0, the solution X is of full rank with
exponentially decaying singular values.

If A is SPD, then also A is SPD, and then, e.g., the method of
conjugate gradients (CG) can be used for solving A (X ) = B. With
an initial guess X0 = (0,0, . . . ,0 ∣0) and employing the low-rank
arithmetics, we get solution in Tucker format.

Cost of CG iteration is changing, it depends on ranks!
(Truncation, open pbs.)

63 / 144



A final note on Tucker decomposition
First note that the “Tucker-like” decompositions

T = (U ′1,U ′2, . . . ,U ′k ,CT ) ∈ Rn1×n2×⋯×nk

are not sufficient (from the computational point of view) for
handling really large tensors.

Let
Ð→
rank(T ) = (r1, r2, . . . , rk), i.e., the Tucker core

CT ∈ R
r1×r2×⋯×rk and let r1 = r2 = ⋯ = rk = 2.

Then the memory requirement to store T are roughly

k ⋅ (n ⋅ 2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U′
ℓ

+ 2k°
CT

≈ 2k ,

i.e., for example for k = 100 we need to store

≈ 2100 ≈ 1.2677 ⋅ 1030 numbers ≈ 9.2234 ⋅ 1018 TiB in doubles.

64 / 144



Graph interpretation:

Tensor networks & Hierarchical formats

65 / 144



Tensors & graphs

To simplify a bit our notion about tensors, tensor products and
tensor decompositions, we employ the graph theory.

Any tensor T is interpreted as a graph vertex, and number of
indices of T as the degree of the vertex.

Thus the scalar, vector, matrix, 3-, 4-, and, e.g., 8-way tensors

t, ti , ti ,j , ti1,i2,i3, ti1,...,i4, ti1,...,i8

are interpreted as

66 / 144



Basic products

Scalar, MV, and MM-products can be then drawn as follows:

y ∈ Rn, x ∈ Rn

yTx = α ∈ R

A ∈ Rm×n, x ∈ Rn

Ax = y ∈ Rm

A ∈ Rm×n, B ∈ Rn×d

AB = C ∈ Rm×d

∑n
j=1 ∑n

j=1 ∑n
j=1

Prod. of scalars, outer prod’s. of (two and three) vec’s and mat’s:

67 / 144



Products involving tensors

▸ Tensor-matrix product (pre- or post-multiplication)

∼ W =M ×ℓ T ,

▸ Tensor-tensor product (contraction)

∼ W = F ×(ß,ℓ) T ,

▸ Tensor-tensor product (contraction) in several pairs of indices
at once

∼ W = F ×((ß,σ),(ℓ,τ)) T .

68 / 144



It allows us to be more creative :-)

▸ A product of matrix A ∈ Rn×n with itself?

∼ ∑
n

i=1
ai ,i = trace(A)

▸ A circular product of matrices A ∈ Rm×n, B ∈ Rn×d , C ∈ Rd×m?

∼ ∑
m

i=1∑
n

j=1∑
d

ℓ=1
ai ,j ⋅ bj ,ℓ ⋅ cℓ,i

▸ But recall the scalar product of tensors! For matrices
A ∈ Rm×n and B ∈ Rm×n it takes form of both—the circular

product and product of a matrix with itself :-)

⟨A,B⟩ = ∑m

i=1∑
n

j=1
bi ,j ⋅ ai ,j = trace(BTA)
=

69 / 144



Tucker decomposition
Graph of the Tucker decompostion

T = (U ′1,U ′2,U ′3, . . . ,U ′k ∣CT )
takes form

Our goal is to break up the high-order core tensor CT to product of
several lower-orders tensors. Computationally, we want to replace
the core as it is, whos number of entries scales exponentially (≈ rk)
with the tensor order k , by a set of tensors, whos number of
entries scales linearly or logarithmically with k . How to do it can
be easily understood by using graphs.

70 / 144



A general tensor network

By a general tensor network we understand interpretation of a
high-order tensor T as a (prescribed) structured product of a set of
lower-order tensors.

The tensor network can be seen as a (de)composition or
approximation framework of the tensor T .

i1
i2

i3 i4
i5

i6

i7

i8

α
β

γ

δ
ǫ

φ

A

B
C

D
E

F

ti1,i2,i3,i4,i5,i6,i7,i8 =
∑α,β,γ,δ,ǫ,φ ai1,i2,α ⋅ bα,β,γ,i8 ⋅

cγ,δ,ǫ,φ ⋅ dβ,i3,δ ⋅
ei4,i5,ǫ ⋅ fφ,i6,i7

n8 Ð→ 4n3 + 2n4

The simples structure for decomposing tensor is a (binary) tree (it
avoids computationally complicated circles).

71 / 144



Tree decomposition of the Tucker core
Recall T = (U ′1,U ′2, . . . ,U ′k ∣CT ). There are two different extremes:
The balanced (as much as possible) binary tree

rk Ð→ (k − 2)r3 + r2 ≈ kr3
So-called hierarchical Tucker
decompostion (HTD).

[L. Grasedyck, SIMAX 31(4), 2010]

The most-unbalanced binary tree

rk Ð→ (k − 2)r3 + 2r2 ≈ kr3
So-called tensor train
decompostion (TTD).

[I. V. Oseledets, SISC 33(5), 2011]

The blue two-way tensors (matrices) are roots of these binary trees.
72 / 144



How to find the prescribed tree structure?
The root

The root is always a tensor of second order (a matrix). Let, for
simplicity, the indices (modes) of the whole core C ∈ Rr1×r2×⋯×rk be
ordered in such a way that

i1, i2, . . . , it and it+1, it+2, . . . , ik

correspond to the left and right branches, respectively.

Thus, for HTD and even k , t = k/2; for TTD t = 1.

Consider the economic SVD of the matricizaton of C

CR = U ′RΣ′RV ′R
T, where R = {1,2, . . . , t},

▸ Then the matrix Σ′
R

is the root of the tree and
▸ matrices U ′

R
, V ′

R
= U ′

C
can be decomposed into left and right

branches of the tree, respectively; C = {1, . . . ,k} ∖R.

73 / 144



How to find the prescribed tree structure?
A single vertex of degree three

Since indices of C are order properly, any vertex of deg.3 looks like:

↑ to the root ↑
iα+1, . . . , iβ

iα+1, . . . , iτ iτ+1, . . . , iβ
↓ to leaves ↓

Let us consider three corresponding
matricizations and their economic SVDs:

C{α+1,...,β}=U ′{α+1,...,β}Σ
′

{α+1,...,β}V
′

{α+1,...,β}
T
,

C{α+1,...,τ}=U ′{α+1,...,τ}Σ
′

{α+1,...,τ}V
′

{α+1,...,τ}
T
,

C{τ+1,...,β}=U ′{τ+1,...,β}Σ
′

{τ+1,...,β}V
′

{τ+1,...,β}
T
.

The key theorem of all tree-form decomp’s (HTD, TTD, ...) says:

range(U ′{α+1,...,β}) ⊆ range(U ′{τ+1,...,β} ⊗U ′{α+1,...,τ}).

74 / 144



How to find the prescribed tree structure?
Tensor-tree-decomposition theorem

Theorem:

range(U ′{α+1,...,β}) ⊆ range(U ′{τ+1,...,β} ⊗U ′{α+1,...,τ}), α < τ < β.

Sketch of the proof: Any column of C{⋯} is a vector v ∈ R(β−α),
that can be reshaped into a matrix M ∈ R(τ−α)×(α−β), v = vec(M).
Note that columns of M are in range(U ′{⋯}) = range(C{⋯}) and
rows of M in range(U ′{⋯}) = range(C{⋯}). Thus

M = C{...}C{⋯}
†
M and MT = C{...}C{⋯}

†
MT´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M = C{...} C{⋯}
†
M C{⋯}

†T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ C{...}
T

giving vec(M) = v = (C{...} ⊗ C{...})(C{⋯}† ⊗ C{⋯}†)v .
75 / 144



How to find the prescribed tree structure?
How to employ the tensor-tree-decomposition theorem?

Denote the three-way tensor Rα,τ,β. Since

↑ to the root ↑
iα+1, . . . , iβ

iα+1, . . . , iτ iτ+1, . . . , iβ
↓ to leaves ↓

Rα,τ,β

range(U ′{⋯}) ⊆ range(U ′{⋯} ⊗U ′{⋯})
there exists a matrix R such that

U ′{⋯} = (U ′{⋯} ⊗U ′{⋯})R , RTR = I

R ∈ R(rank{⋯}(C) ⋅ rank{⋯}(C))× (rank{⋯}(C))

It remains to interpret R =R{1,2}
α,τ,β

so

Rα,τ,β ∈ R(rank{⋯}(C))×(rank{⋯}(C))×(rank{⋯}(C))

Doing this with all deg.3 vertices yields the HTD with any binary
tree (recall the matrices on leaves). The last tensor of order two in
TTD is just an identity matrix.

It can be applied on any (not necessarily binary) tree-form decomp.

76 / 144



A few notes on hierarchical / tree-form decompositions

▸ There is a lot of different ranks of T in the game
(dimensions of cubes).

▸ To be efficent, these ranks needs to be small.
▸ To be effective, T has to be either of low rank, or well
approximable by a such low rank tensor.

▸ Otherwise we are not able to manage T in this way.
▸ Design of the tree should reflect knowledge about the problem.
▸ Employ symmetries between modes (if there are; ti ,j ,ℓ = tj ,i ,ℓ).

Note that there are also cyclic decompositions:

Tensor train

decomposition

Ð→

Tensor chain

decomposition

77 / 144



A few notes on hierarchical / tree-form decompositions
Recall that we first did the Tucker decomposition of a tensor and
now the tree-form decomposition of the Tucker core.

Both together gives the HTD with structure like:

T = (U ′1,U ′2, . . . ,U ′k ∣C) =

C

↙

Note that in this particular case R = {1,2,3,4},

T R =

U ′R³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(U ′4 ⊗U ′3 ⊗U ′2 ⊗U ′1) (R{1,2}2,3,4 ⊗R{1,2}0,1,2 ) (R{1,2}0,2,4 ) Σ′R
( (U ′8 ⊗U ′7 ⊗U ′6 ⊗U ′5) (R{1,2}6,7,8 ⊗ I) (R{1,2}5,6,8 ⊗ I) (R{1,2}4,5,8 )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V ′R

)T

78 / 144



Arithmetics of hierarchical Tucker

79 / 144



Motivation

Recall that we want to solve, e.g.,

A (X ) = B, where X , B ∈ Rn1×n2×⋯×nk ,

where A is symmetric positive definite (SPD) typically represented
by one or more sparse matrices in outer (Kronecker) product, and
the low-rank right-hand side B is given in HTD.

By taking X0 = 0 and storing it in the same tree structure as B
(e.g., by replacing all numbers by zeros), we can start to search for
X for example by the method of conjugate gradients (CG).

We need to know how to (i) do linear combinations, (ii)
TM-product, and (iii) calculate scalar products and norms in HTD.

80 / 144



A sum (a linear combination) of two HTDs
Let T and F be of the same order k , of the same dimensions, and
with HTDs of the same structure:

T = (U ′1,T ,U ′2,T , . . . ,U ′k,T ∣CT ) =

CT

↙
.

In the top, there is one root matrix Σ′
T
, in the middle, there is

bunch of inner cubes (3-way tensors) Rα,τ,β,T , and in the bottom
k leaves matrices U ′j ,T .

Recall that

(Rα,τ,β,T
{1,2})TR{1,2}

α,τ,β,T
= I = Irank{α+1,...,β}(T ) for all α < τ < β,

U ′j ,T
TU ′j ,T = I = Irank{j}(T ) for j = 1,2, . . . ,k .

81 / 144



A sum (a linear combination) of two HTDs

A linear combination
E = ϕT + ψF

will be done in several steps: Step 1: Concatenation of leaves,
block diagonal composition (direct sum) of inner cubes and roots:

[U ′j ,T , U ′j ,F],
✟

✟

✟

✟

✟
✟

✟

✟

✟

✟

✟
✟

✟

✟

✟

✟

✟
✟

✟

✟

✟

✟

✟
✟

✟

✟

✟

✟

✟

✟R⋯,T

R⋯,F
, [ ϕΣ′T 0

0 ψΣ′
F

] ,

gives the sum E formally in the same HTD structure. However,
dimensions of all objects are twice as large and U ′⋯’s and R

{1,2}
⋯ ’s

do not have orthonormal columns.

Step 2: (Re)compression of the sum enforing wanted properties
requires plenty of QR’s, TM-prod’s and one SVD.

82 / 144



A sum (a linear combination) of two HTDs
Recompression

QR QR QR QR QR QR QR QR

e-QR decomp’s of leaves matrices; triangular factors go up to cubes

83 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

TM TM TM

W

W

Multiplication of cubes by triangular factors (two are waiting)

84 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

QR QR QR

W

W

{1,2}-ma’tions & e-QR decomp’s of cubes; triangular factors go up

85 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

TM
TM

W

Multiplication of cubes by triangular factors (one is waiting)

86 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

QR
QR

W

{1,2}-ma’tions & e-QR decomp’s of cubes; triangular factors go up

87 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

W
"

TM

W

Multiplication the last cube by triangular factors (root is waiting)

88 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

W
"

QR

W

{1,2}-ma’tions & e-QR decomp’s of the last cube

89 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

W
"

W

MM

Multiplication the root by triangular factors

90 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

W
"

W

SVD

e-SVD of the root; we’ve the root Σ′
E
; U ′ and V ′ are going down

91 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

TM
"

TM

"

The last two multiplications of cubes.

92 / 144



A sum (a linear combination) of two HTDs
Recompression

" " " " " " " "

" " "

"

"

"

"

Done! " " "

93 / 144



Tensor-matrix multiplication

Similarly we can do the ℓ-mode tensor-matrix multiplication,

E =M ×ℓ T .
It will be done again in sevaral steps: Step 1: Multiplication of M
with the particular (the ℓth) leaf:

[MU ′ℓ,T ]
that gives the product E formally in the HTD structure. Similarly
as before we can do the:

Step 2: (Re)compression of the product E . Since we multiplied
only in one mode, everything is a bit simpler.

94 / 144



Tensor-matrix multiplication (3-mode)
Recompression

QR

e-QR decomp. of the third leaf; triangular factor goes up to cubes

95 / 144



Tensor-matrix multiplication (3-mode)
Recompression

"

TM

Multiplication of cubes by triangular factors (two are waiting)

96 / 144



Tensor-matrix multiplication (3-mode)
Recompression

"

QR

{1,2}-ma’tions & e-QR decomp’s of cubes; triangular factors go up

97 / 144



Tensor-matrix multiplication (3-mode)
Recompression

"

"

TM

Multiplication of cubes by triangular factors (one is waiting)

98 / 144



Tensor-matrix multiplication (3-mode)
Recompression

"

"

QR

{1,2}-ma’tions & e-QR decomp’s of cubes; triangular factors go up

99 / 144



Tensor-matrix multiplication (3-mode)
Recompression

"

"

W

MM

Multiplication the root by triangular factors

100 / 144



Tensor-matrix multiplication (3-mode)
Recompression

"

"

W

SVD

e-SVD of the root; we’ve the root Σ′
E
; U ′ and V ′ are going down

101 / 144



Tensor-matrix multiplication (3-mode)
Recompression

"

"

TM
TM

"

The last two multiplications of cubes.

102 / 144



Tensor-matrix multiplication (3-mode)
Recompression

"

"

"

"

"

Done! " " "

103 / 144



Scalar product of two tensors in HTD

Finally, we present evaluation of the scallar product

⟨T ,F⟩
of two vectors in HTD with the same trees; and also of the norm

∥T ∥ = (⟨T ,T ⟩) 12 .

104 / 144



Scalar product of two tensors in HTD

Two tensors with the same tree

105 / 144



Scalar product of two tensors in HTD

Two tensors with the same tree and their scalar product

106 / 144



Scalar product of two tensors in HTD

Two tensors with the same tree and their scalar product

107 / 144



Scalar product of two tensors in HTD

Two tensors with the same tree and their scalar product

108 / 144



Scalar product of two tensors in HTD

Evaluation starts with bunch of MM-products of leaves

109 / 144



Scalar product of two tensors in HTD

MM-products result in matrices

110 / 144



Scalar product of two tensors in HTD

Then comes bunch of TM-prod’s; we choose smaller resulting dim’s

111 / 144



Scalar product of two tensors in HTD

TM-products result in tensors

112 / 144



Scalar product of two tensors in HTD

We continue with bunch of two-mode TT-products

113 / 144



Scalar product of two tensors in HTD

Two-mode TT-products of cubes result in matrices

114 / 144



Scalar product of two tensors in HTD

We continue with bunch of TM-products; we can choose faster way

115 / 144



Scalar product of two tensors in HTD

TM-products result in tensors

116 / 144



Scalar product of two tensors in HTD

We continue with bunch of two-mode TT-products

117 / 144



Scalar product of two tensors in HTD

Two-mode TT-products of cubes result in matrices

118 / 144



Scalar product of two tensors in HTD

The last TM-product

119 / 144



Scalar product of two tensors in HTD

The last TM-product results in tensor as well

120 / 144



Scalar product of two tensors in HTD

The last two-mode TT-product

121 / 144



Scalar product of two tensors in HTD

The last two-mode TT-products of cubes results in matrix as well

122 / 144



Scalar product of two tensors in HTD

The circular prod. of four matrices! We start with two MM prod’s

123 / 144



Scalar product of two tensors in HTD

Thus we end up with two matrices

124 / 144



Scalar product of two tensors in HTD

We calculate their scalar product

125 / 144



Scalar product of two tensors in HTD

Done! " " "

126 / 144



Final notes on arithmetics of HTDs
For a linear combination and scallar product of two tensors

ϕT +ψF , ⟨T ,F⟩,
T , F need to be of the same dimensions (and thus also the order).

It seems that requirement on the same tree-structure brings a new
restriction, but it is possible do that also with tensors with
different tree-structures.

However, while doing that with tensors with different binary trees,
there always appear tensors of higher orders than presented.
Typically (i.e., if the root is not in the game), there appear at least
one inner ‘cube’ of order four (no hihger orders are needed(?!)).

While summation, it can employ some maximal (or the greates(?!))
common sub-tree of both and recalculate the structure of one.

[Kressner, Tobler, htucker—Matlab toolbox, 2012]
http://anchp.epfl.ch/htucker

127 / 144

http://anchp.epfl.ch/htucker


A (simple) example of practical application

128 / 144



Heat conductivity problem

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

 2D triangular mesh

 # Vertices  :  1752,      # Elements  :  3330,      # Edges  :  5081

Poisson (steady-state heat)
equation:

−∇(σ(ξ)∇u) = f in Ω
u = uΓ on Γ = ∂Ω

and σ(ξ) with piecewise
constant heat conductivity

σ(ξ) = { 1 + θℓ for ξ ∈ Discℓ
1 for ξ /∈ Discℓ ;

f denotes the heat-flux density
of sources.

FEM discretization with piecewise linear elments then gives us two
SPD matrices: The stiffness A ∈ Rn×n and mass M ∈ Rn×n matrix.

129 / 144



Heat conductivity problem

We are interested in controllability of the dynamical system (DS)

M
d

dt
u(t) = Au(t) +Bf (t)
y(t) = Cu(t) +Df (t)

where

▸ M ∈ Rm×m and A ∈ Rm×m are the (SPD) mass and stiffness
matrices; u(t) ∈ Rm × TIME denotes the inner state of DS;

▸ B ∈ Rm×p localizes the p (p ≪m) inputs
of the control signal f (t) ∈ Rd × TIME ;

▸ and the rest defines the output signal y(t) ∈ Rq × TIME .

The so-called controllability Gramian then solves the generalized
Lyapunov equation (LE)

AXMT +MXAT = −BBT.

130 / 144



Heat conductivity problem
Since M is SPD, M = LLT (Cholesky fact.), the generalized LE

AXMT +MXAT = −BBT

is congruent to a standard LE

L−1 ⋅ / AXLLT + LLTXAT = −BBT / ⋅ L−T
L−1A XL + LTX ATL−T = −L−1BBTL−T³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ

I=L−TLT
­
I=LL−1

(L−1AL−T) (LTXL) + (LTXL) (L−1AL−T)T = −(L−1B) (L−1B)T
ÃX̃ + X̃ ÃT = −B̃B̃T

with SPD Ã. Note that for B ∈ Rm×p, p = 1, singular values of

X̃ = X̃T = ∫
TIME

(eÃtB̃)(eÃt B̃)Tdt
decay exponentially; it is well approximable by a low-rank matrix.

131 / 144



Heat conductivity problem

We look for the (symmetric) low-rank matrix solution X ∈ Rm×m of

AXMT +MXAT = −BBT.

But recall that

σ(ξ) = { 1 + θℓ for ξ ∈ Discℓ
1 for ξ /∈ Discℓ ,

thus in this case

A = A(θ1, θ2, θ3, θ4) = A0 +∑4

ℓ=1
θℓAℓ with θℓ ∈ R

+

after discretization θℓ ∈ {θℓ,1, θℓ,2, . . . , θℓ,dℓ}. Then also

X = X (θ1, θ2, θ3, θ4) = X ∈ Rm×m×d1×d2×d3×d4

and we look for a 6-way tensor, symmetric in the first two modes.

132 / 144



Heat conductivity problem

Since the opeator is SPD, we use the CG method.

Questions:

▸ Is X ∈ Rm×m×d1×d2×d3×d4 approximable by a low-rank tensor?
▸ We do not have any ranks. How to define numerical ranks of
individual objects (residuals, direction vectors, ...)?

▸ The generalized vs. standard LE; the congruence

AXMT +MXAT = −BBT
←→ ÃX̃ + X̃ ÃT = −B̃B̃T

change behavior of CG.
▸ Preconditioner should preserve the structure of the problem.
▸ Usually, the goal of preconditioning is to speed-up the
convergence in terms of iterations. Here, the cost of iteration
strongly depends on ranks (dimensions of the Tucker core and
its inner cubes). But preconditioner involves these dimension.
But how?

133 / 144



Heat conductivity problem—No parameters
Singular values of X ∈ Rm×m

0 10 20 30 40 50 60
10

−20

10
−15

10
−10

10
−5

10
0

Singular values of X

j

σ j(X
)

134 / 144



Heat conductivity problem—No parameters
Singular values of CG approximations Xk

135 / 144



Heat conductivity problem—No parameters
Convergence of sing’vals of CG approximations Xk

0 50 100 150 200
10

−20

10
−15

10
−10

10
−5

10
0

k

S
in

gu
la

r 
va

lu
es

 o
f X

k
Convergence of 18 largest sinular vaules of X

k

136 / 144



Heat conductivity problem—No parameters
Ranks of CG approximations Xk and residuals Rk

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

Iteration number

Numerical ranks

 

 

Numerical rank for X
k

Numerical rank for R
k

137 / 144



Heat conductivity problem—One parameter
Singular values of X ∈ Rm×m×d

0 10 20 30 40 50

10
−10

10
−5

10
0

j

Singular value decay of different matricizations of X

 

 

σ
j
(X{1}) = σ

j
(X{2})

σ
j
(X{3})

138 / 144



Heat conductivity problem—One parameter
Ranks of CG approximations Xk

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Iteration number k

Multilinear rank of X
k

 

 

θ ∈  [1,  10], d =   10
θ ∈  [1,  10], d = 100
θ ∈  [1,  10], d = 1e3
θ ∈  [1,  10], d = 1e4
θ ∈  [1,  30], d =   30
θ ∈  [1,100], d = 100

139 / 144



Heat conductivity problem—All four parameters

The tree structure and singular values of X ∈ Rm×m×d1×d2×d3×d4

Dim. 1, 2

Dim. 3, 4, 5, 6

Dim. 1

Dim. 2

Dim. 3, 4

Dim. 5, 6

Dim. 3

Dim. 4

Dim. 5

Dim. 6

140 / 144



Heat conductivity problem—All four parameters
Ranks of CG approximations Xk

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

Hierarchical ranks of X
k

 

 

rank
1,2

rank
1

rank
2

rank
3,4,5,6

rank
3,4

rank
5,6

rank
3
, ..., rank

6

141 / 144



References
Selected original works:

● F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of
products, Journal of Mathematics and Physics 6(1) (1927), pp. 164–189.

● F. L. Hitchcock, Multilple invariants and generalized rank of a p-way
matrix or tensor, Journal of Math. and Physics 7(1) (1927), pp. 39–79.

● L. R. Tucker, Implications of factor analysis of three-way matrices for
measurement of change, in Problems in Measuring Change, C. W. Harris,
ed., University of Wisconsin Press, 1963, pp. 122–137.

● L. R. Tucker, The extension of factor analysis to three-dimensional
matrices, in Contributions to Mathematical Psychology, H. Gulliksen and
N. Frederiksen, eds., Holt, Rinehardt & Winston, NY, 1964, pp. 110–127.

● L. R. Tucker, Some mathematical notes on three-mode factor analysis,
Psychometrika, 31 (1966), pp. 279–311.

● L. Grasedyck, Hierarchical singular value decomposition of tensors,
SIAM Journal on Matrix Analysis and Appl. 31(4) (2010), pp.
2029–2054.

● I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific
Computing, 33 (2011), pp. 2295–2317.

142 / 144



References

Survey papers & lectures:
● T. G. Kolda, B. W. Bader, Tensor decompositions and applications,
SIAM Review 51(3) (2009), pp. 455–500.
● L. Grasedyck, D. Kressner, C. Tobler, A literature survey of low-rank
tensor approximation techniques, GAMM Mitt. 36(1) (2013), pp. 53–78.
● B. N. Khoromskij, Introduction to tensor numerical methods in
scientific computing (ETH Zürich, slides), 2010.
● E. Tyrtyshnikov, Num. meth. with tensor represent. of data (Summers
school slides), 2012. On-line: http://academy2012.hpc-russia.ru/
files/lectures/algebra/0703 1 tyrtyshnikov.pdf.

Toolboxes:
● B. W. Bader, T. G. Kolda, MATLAB Tensor Toolbox, version 2.6.,
2015. On-line: http://www.sandia.gov/~tgkolda/TensorToolbox.
● D. Kressner, C. Tobler, htucker—A MATLAB toolbox for tensors in
hierarchical Tucker format, TR 2012-02, SAM ETH Zurich, 2012.
On-line: http://anchp.epfl.ch/htucker.
● L. Sorber, M. Van Barel, L. De Lathauwer, Tensorlab 3.0, 2016.
On-line: http://www.tensorlab.net.

143 / 144

http://academy2012.hpc-russia.ru/files/lectures/algebra/0703_1_tyrtyshnikov.pdf
http://academy2012.hpc-russia.ru/files/lectures/algebra/0703_1_tyrtyshnikov.pdf
http://www.sandia.gov/~tgkolda/TensorToolbox
http://anchp.epfl.ch/htucker
http://www.tensorlab.net


That’s All Volks!

✟

✟

✟

✟

✟
✟

✟

✟

✟

✟

✟
✟

✟

✟

✟

✟

✟
✟

✟

✟

✟
✟

✟

✟

✟

✟

✟

✟

C
C

C

C

Thank You for Your Attention

144 / 144


