defined for all P on \mathbb{S} , with only one exception: the north pole N. If P approaches N, then the distance of the corresponding point z in the plane to the origin gets arbitrarily large. This observation shows that the north pole on \mathbb{S} plays the same role as the point at infinity with respect to the complex plane.

Figure 2.5: Stereographic projection of a sphere onto the complex plane

Extending the stereographic projection to all of $\mathbb S$ by assigning the north pole N to the point at infinity results in a bijective correspondence between $\mathbb S$ and $\widehat{\mathbb C}$. Hence we can label the points on $\mathbb S$ with the corresponding complex numbers of $\widehat{\mathbb C}$. In what follows we shall therefore identify the sphere $\mathbb S$ and the extended complex plane $\widehat{\mathbb C}$ and call it the *Riemann sphere*. The *spherical distance* $d(z_1,z_2)$ of two points in $\widehat{\mathbb C}$ is the Euclidean length of the straight segment connecting the corresponding points on the sphere $\mathbb S$. If $z_1,z_2\in\mathbb C$ then

$$d(z_1, z_2) = \frac{2|z_1 - z_2|}{\sqrt{1 + |z_1|^2} \sqrt{1 + |z_2|^2}}, \qquad d(z_1, \infty) = \frac{2}{\sqrt{1 + |z_1|^2}}.$$

Arithmetic on the Sphere. Stereographic projection allows us to transplant the arithmetic operations from $\mathbb C$ to $\widehat{\mathbb C}$. Additionally we postulate that

$$z/\infty := 0 \qquad \text{for} \quad z \in \mathbb{C}$$

$$z/0 := \infty \qquad \text{for} \quad z \in \mathbb{C} \setminus \{0\}$$

$$z \pm \infty = \infty \pm z := \infty \qquad \text{for} \quad z \in \mathbb{C}$$

$$z \cdot \infty = \infty \cdot z := \infty \qquad \text{for} \quad z \in \widehat{\mathbb{C}} \setminus \{0\}.$$

$$(2.15)$$

Note that we do not define $\infty \pm \infty$, ∞/∞ , 0/0 and $0 \cdot \infty$. After extending modulus |z| and phase $\psi(z)$ to all points of the Riemann sphere by setting

$$|\infty| := \infty, \quad \psi(0) := 0, \quad \psi(\infty) := \infty,$$

nity r and on of plane

tions

= 1.

s are n the icting up. In ection

ne in sume " (see

d \mathbb{R}^3 .
plane \mathbb{C} are

ection s well plane,