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Typeset by AMS–LATEX.





iv



Prohlašuji,
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Abstract

The presented thesis focuses on the solution of an orthogonally invariant linear
approximation problem with multiple right-hand sides AX ≈ B through the total
least squares (TLS) concept. With contribution of the early works of Golub and
Reinsch (1970), Golub (1973), and van der Sluis (1975), the TLS theory for a
problem with a single right-hand side was developed by Golub and Van Loan (1980).
Then it was further extended by the so called nongeneric solution approach of Van
Huffel and Vandewalle (1991), and finally revised by the core problem theory of
Paige and Strakoš (2002, 2006). For a problem with multiple right-hand sides, a
generalization of the TLS concept including a nongeneric solution was presented by
Van Huffel and Vandewalle (1991).

Paige and Strakoš proved that for a problem with a single right-hand side, i.e.,
Ax ≈ b, there is a reduction based on the singular value decomposition (SVD) of
A which determines a core problem A11 x1 ≈ b1, with all necessary and sufficient
information for solving the original problem. The core problem always has the
unique TLS solution, and, using the transformation to the original variables, it
gives the solution of the original approximation problem identical to the minimum
2-norm solutions of all TLS formulations given by Van Huffel and Vandewalle.
Moreover, the core problem can be efficiently computed using the (partial) upper
bidiagonalization of the matrix [ b |A ]. Hnětynková, Plešinger and Strakoš (2006,
2007) derived, using the well known properties of Jacobi matrices, the core problem
formulation from the relationship between the Golub-Kahan bidiagonalization and
the Lanczos tridiagonalization.

This thesis extends the classical analysis by Van Huffel and Vandewalle. It starts
with an investigation of the necessary and sufficient conditions for the existence of
the TLS solution. It is shown that the TLS solution is in some cases different
from the output returned by the TLS algorithm by Van Huffel (1988), see also Van
Huffel, Vandewalle (1991). The second goal of the presented thesis is an extension
of the core problem theory concept to problems with multiple right-hand sides.
Here the SVD-based reduction is related to the band generalization of the Golub-
Kahan bidiagonalization algorithm, which was for this purpose for the first time
considered by Björck (2005) and Sima (2006). We prove that the reduction results
in a minimally dimensioned subproblem A11 X1 ≈ B1, containing all necessary and
sufficient information for solving the original problem. Unlike in the single right-
hand side case, the core problem in the multiple right-hand side case may not have
a TLS solution.

Keywords: linear approximation problem, multiple right-hand sides, total least
squares, orthogonal transformation, data reduction, Golub-Kahan bidiagonalization
algorithm, Jacobi matrices, core problem.
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Abstrakt

Předkládaná disertačńı práce se zabývá řešeńım lineárńıch aproximačńıch úloh s v́ı-
cenásobnou pravou stranou AX ≈ B metodou úplných nejmenš́ıch čtverc̊u (TLS
z anglického total least squares). Analýza TLS problému pro úlohu s jednou pravou
stranou byla, v návaznosti na dř́ıvěǰśı práce Goluba a Reinsche (1970), Goluba
(1973) a van der Sluise (1975), publikována v článku Goluba a Van Loana (1980).
Tato analýza byla později rozš́ı̌rena o koncept negenerického řešeńı, který zaváděj́ı
Van Huffel a Vandewalle (1991). Zcela nový vhled do teorie přináš́ı myšlenka core
problému Paige a Strakoše (2002, 2006). Zobecněńım TLS problému na úlohy s v́ıce
pravými stranami, včetně konceptu negenerického řešeńı, se jako prvńı zabývali Van
Huffel a Vandewalle (1991).

Paige a Strakoš dokázali za přirozeného předpokladu ortogonálńı invariance,
tedy nezávislosti řešeńı na volbě souřadného systému, že pro libovolný problém
s jednou pravou stranou Ax ≈ b existuje transformace zkonstruovaná pomoćı sin-
gulárńıho rozkladu matice A, která redukuje p̊uvodńı problém na tak zvaný core
problém A11 x1 ≈ b1, obsahuj́ıćı nutnou a postačuj́ıćı informaci k řešeńı p̊uvodńıho
problému. Dále ukázali, že core problém má vždy nezávisle na p̊uvodńıch datech
řešeńı ve smyslu TLS a toto řešeńı je jednoznačné. Nav́ıc TLS řešeńı core problému
transformované zpět do proměnných p̊uvodńıho problému je identické s př́ıslušným
(klasickým nebo negenerickým) v normě minimálńım řešeńım p̊uvodńıho problému.
Redukce na core problém může být provedena velmi jednoduše transformaćı matice
[ b |A ] na horńı bidiagonálńı tvar. Hnětynková, Plešinger a Strakoš (2006, 2007)
odvodili vlastnosti core problému alternativně pomoćı vlastnost́ı Jakobiho matic a
užit́ım vztahu mezi Golubovou-Kahanovou bidiagonalizaćı a Lanczosovou tridiago-
nalizaćı.

Předkládaná práce rozšǐruje klasické výsledky Van Huffelové a Vandewalleho
pro úlohy s násobnou pravou stranou. Zabývá se analýzou nutných a postačuj́ıćıch
podmı́nek existence TLS řešeńı. Práce ukazuje, že v některých zvláštńıch př́ıpadech
může mı́t TLS problém řešeńı, které je však r̊uzné od výsledku spočteného tak
zvaným TLS algoritmem, viz Van Huffel (1988), př́ıpadně Van Huffel, Vande-
walle (1991). Dále se práce zabývá rozš́ı̌reńım myšlenky core problému na úlohy
s v́ıcenásobnou pravou stranou. Zobecňuje redukci dat založenou na singulárńım
rozkladu a zabývá se jej́ım vztahem k pásovému zobecněńı Golubova-Kahanova
bidiagonalizačńıho algoritmu, které bylo pro tento účel prvně doporučeno Björckem
(2005) a Simou (2006). Ukážeme, že pro libovolné AX ≈ B existuje transformace,
která p̊uvodni problém redukuje na podproblém A11 X1 ≈ B1 minimálńı dimenze,
obsahuj́ıćı nutnou a postačuj́ıćı informaci k řešeńı p̊uvodńıho problému. Ukážeme
však, že na rozd́ıl od úloh s jednou pravou stranou core problém pro úlohy s v́ıce
pravými stranami obecně nemuśı mı́t TLS řešeńı.

Kĺıčová slova: lineárńı aproximačńı problém, v́ıcenásobná pravá strana, úplný
problém nejmenš́ıch čtverc̊u, ortogonálńı transformace, redukce dat, Golubova-
Kahanova bidiagonalizace, Jakobiho matice, core problém.
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Notation

Scalars, vectors and matrices

R denotes the set of real numbers (scalars);
Rm linear vector space of real vectors of length m;
Rm×n linear vector space of real m by n matrices.

Small Greek letters α, β, etc. usually denote scalars. Small Roman letters x, b,
etc. denote real vectors, matrix components, and also integers. Capital Roman and
sometimes Greek letters A, Q, Π, etc. denote real matrices. For example we denote:

ej jth Euclidean vector, e.g., e2 ≡ [ 0 , 1 , 0 , . . . , 0 ]T ;
mij ith component of the jth column of the matrix M , i.e. mij ≡

eT
i M ej ;

P , Q, R orthogonal matrices;
T2ρ+1 square symmetric band matrix with, in general, 2ρ+1 nonzero

diagonals (with the bandwidth equal to ρ);
In n by n identity matrix;
Π permutation matrix.

In particular we strictly use the following notation:

A, x, b system matrix, vector of unknowns, and right-hand side vector,
in the approximation problem Ax ≈ b, respectively;

A, X , B system matrix, matrix of unknowns, and right-hand side ma-
trix, in the approximation problem AX ≈ B, respectively;

m, n, d dimensions of the vectors and matrices as follows: A ∈ Rm×n,
x ∈ Rn and b ∈ Rm, or X ∈ Rn×d and B ∈ Rm×d;

and we usually assume m ≥ n + d (otherwise add zero rows to the system matrix
and the right-hand side).

Singular values and eigenvalues

σj (M) denotes jth largest singular value of the matrix M ∈ Rm×n,
for j = 1 , . . . , min {m , n };

λj (K) jth largest eigenvalue value of the square symmetric (positive
semidefinite) matrix K ∈ Rn×n, for j = 1 , . . . , n.

sp (K) denotes the spectrum (set of all eigenvalues) of the square sym-
metric (positive semidefinite) matrix K ∈ R

n×n, i.e. sp (K) ≡
{λj (K) , j = 1 , . . . , n }.

Since m ≥ n + d we denote:

σ′
j jth largest singular value of the system matrix A ∈ R

m×n, i.e.
σ′

j ≡ σj (A) and σ′
1 ≥ . . . ≥ σ′

n ≥ 0, and
ς ′j jth largest of k distinct and nonzero singular values of A ∈

Rm×n, i.e. ς ′1 > . . . > ς ′k > 0;
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σj jth largest singular value of the extended matrix [B |A ] ∈
Rm×(n+d) (possibly [ b |A ] ∈ Rm×(n+1)), i.e. σj ≡ σj ([ B |A ])
and σ1 ≥ . . . ≥ σn+d ≥ 0;

p, q, e integers which characterize the multiplicity of the singular
value σn+1 ≡ σn+1 ([ B |A ]).

Vector and matrix norms

‖v‖ denotes the 2-norm (Euclidean norm) of the given vector x,
‖v‖ ≡ (

∑
j v2

j )1/2;
‖M‖ 2-norm (spectral norm) of the given matrix M ∈ Rm×n,

‖M‖ ≡ max‖v‖=1 { ‖Mv‖ } = σ1 (M);
‖M‖F Frobenius norm of the given matrix M ∈ Rm×n, ‖M‖F ≡

(
∑

ij m2
ij)

1/2 = (
∑

j σ2
j (M))1/2.

Symbolic notation for matrices and matrix components

♥ denotes a generally nonzero matrix (or vector) component;
♣ denotes a matrix (or vector) component which is different from

zero (often positive); occasionally it denotes a block (submatrix
or subvector) or whole matrix (or vector) different from zero;
(the zero components of matrices (or vectors) are not high-
lighted).

Standard matrix operations and properties

MT denotes the matrix transposed to M ∈ Rm×n;
M † Moore-Penrose pseudoinverse of the matrix M ∈ R

m×n;
K−1 denotes the inverse of the square nonsingular matrix K ∈

Rn×n;

rank (M) number of linearly independent rows and/or columns of M ∈
Rm×n.

Matrix associated subspaces, subspaces operations

R (M) denotes the range of the matrix M ∈ Rm×n, R (M) ≡ { y :
y = Mx , x ∈ Rn } ⊂ Rm;

N (M) the null space of the matrix M ∈ Rm×n, N (M) ≡ { x :
Mx = 0 } ⊂ R

n;

[U ]⊥ orthogonal complement of U ;
V ⊕ U direct sum of mutually orthogonal subspaces V and U ;
span ( vj ) span of vectors vj , span ( v1 , . . . , vn ) ≡ R ([ v1 , . . . , vn ]).

Approximation problems

Ax ≈ b approximation problem with single right-hand side;
AX ≈ B approximation problem with multiple right-hand sides;
A11 X1 ≈ B1 core problem within AX ≈ B (in particular in the SVD form);
Ã11 X̃1 ≈ B̃1 core problem within AX ≈ B in the banded form;

XTLS solution of TLS problem;
XNGN nongeneric solution of the TLS problem;
XConst. solution of the constrained problem;
XT-TLS solution of the truncated TLS problem;
XComp. composed solution of the composed problem;

F1, F2, F3 sets of problems of the 1st class;
S set of problems of the 2nd class.
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List of abbreviations and acronyms

CS denotes the CS (cosine sine) decomposition;
LQ LQ decomposition, M = L Q, where L is lower triangular;
QR QR decomposition, M = Q R, where R is upper triangular;
SVD singular value decomposition, M = U Σ V T or M = S Θ WT ;

LS, OLS (ordinary) least squares;
DLS data least squares;
ScTLS, STLS scaled total least squares;
TLS total least squares;
T-TLS truncated total least squares.
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Chapter 1

Introduction

This chapter introduces the orthogonally invariant linear approximation problems.
Such problems arise in many scientific and technical areas and various techniques
are used to solve them. The least squares concept and the related techniques – data
least squares, (scaled) total least squares – are briefly mentioned here, as well as
the unification of all these concepts using the scaled total least squares (see also the
series of papers [61, 62, 63]).

The rest of this chapter focuses namely on the total least squares concept ap-
plied on the problems with single right-hand sides. We briefly summarize the main
idea of the so called basic and nongeneric solutions of total least squares, given by
G. H. Golub and C. F. Van Loan in [31], and S. Van Huffel and J. Vandewalle in
[84], respectively. Then we recall the core problem theory given by C. C. Paige and
Z. Strakoš in [64]. At the end of this chapter we formulate the goals of the thesis.

1.1 Linear approximation problems

We are interested in the linear approximation problem

Ax ≈ b , A ∈ R
m×n , x ∈ R

n , b ∈ R
m , (1.1)

and its more general form

AX ≈ B , A ∈ R
m×n , X ∈ R

n×d , B ∈ R
m×d . (1.2)

Such linear approximation problems arise in a broad class of scientific and tech-
nical areas, for example in medical image deblurring (tomography), bioelectrical
inversion problems, geophysics (seismology, radar or sonar imaging), astronomical
observations. This thesis mainly focuses on the total least squares (TLS) formula-
tion of (1.1), (1.2) that leads to a procedure that has been independently developed
in various literature. It has been known by various names, for example, it is known
as the errors-in-variables modeling in the statistical literature, see [84, 85, 86].

There exist a lot of approaches that are closely related to the TLS concept.
For example, an additional difficulty appears when the system (1.1), (1.2) is ill-
posed, here the matrix A is ill conditioned and typically a small perturbation of
right-hand side causes large changes in the estimated solution. The matrix A is
often numerically rank deficient and it has small singular values, but without a well
defined numerical rank (singular values decay gradually without noticeable gap).
In such cases the least squares (LS), the TLS or similar techniques might give a
solution that is absolutely meaningless, because it is dominated by errors present in
the data and possibly also by computational (rounding) errors. The regularization
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4 CHAPTER 1. INTRODUCTION

techniques must be used in order to obtain a meaningful solution, see for example
[36, 38].

Model reduction represents another important area of applications. Here the
matrix A represents a model and the vector b or columns of the matrix B represent
the observation vectors, e.g. measured data, that naturally contain errors. The idea
is to approximate the high order system (1.1) or (1.2) by a lower order one while
approximating well the behavior of the whole system. Truncation and projection
techniques used to reduce the dimensions of the linear system may also be viewed
as a type of regularization. Such methods are, for example the truncated-least
squares (T-LS) also called the truncated-singular value decomposition (T-SVD),
the truncated-total least squares (T-TLS), see [67], or Krylov subspace methods
and Lanczos-type processes [20]. The system (1.2) can in such applications contain
significantly more observations (columns of B) than is the dimension of range of A,
or the number of columns of A, i.e. d � n; similar situation can occur in various
statistical applications.

The systems (1.1), (1.2) can be compatible, i.e., b ∈ R (A), R (B) ⊂ R (A),
or incompatible, i.e., b �∈ R (A), R (B) �⊂ R (A). The compatible case is simpler
because it reduces to finding a solution of the system of linear algebraic equations.
Thus here the incompatible case is often considered. Another uninteresting case is
excluded by the assumption AT b �= 0 or AT B �= 0. In this case it is meaningless
to approximate b or columns of B by the columns of A and the systems (1.1), (1.2)
have trivial solutions x = 0 or X = 0, respectively. In particular we assume
a nonzero matrix A and a nonzero right-hand side vector b or matrix B. We
assume for simplicity only the real case, an extension to the complex data being
straightforward.

Since the incompatible problem does not have a solution in the classical meaning,
the solution is obtained by solving a minimization (optimization) problem. It is
senseful to assume orthogonally (unitarily) invariant minimization problems, i.e.
problems such that their solutions do not depend on the particular choice of bases
in Rm, Rn and Rd in (1.1) or (1.2). In other words, when the original problem is
transformed to another basis, this transformed problem is solved, and its solution
is transformed back to the original basis, then this back-transformed solution is
identical to the solution obtained directly from solving original problem.

1.2 Least squares and related techniques

Various orthogonally invariant minimization techniques can be used for solving the
linear approximation problems. We introduce some of them on the problems with
single right-hand sides (1.1), the extension of their definitions to problems with
multiple right-hand sides (1.2) being straightforward.

The most common technique called (ordinary) least squares (LS, OLS) or linear
regression is used to solve the system (1.1) when errors are confined to the right-hand
side b but not to the matrix A. The LS method seeks a vector g ∈ Rn satisfying

min
x,g

‖g‖ subject to Ax = b + g ,

i.e., (b + g) ∈ R (A). A minimal perturbation of the right-hand side b is searched
such that the corrected system is compatible. In the multiple right-hand side case
the Frobenius norm of the correction of B is minimized; it is easy to see that the
LS problem with multiple right-hand side B ∈ Rm×d represents nothing more than
d independent LS problems with single right hand sides – the columns of B.

The opposite case to the LS is the data least squares (DLS), see [33]. In DLS the
correction is allowed only in A (errors are assumed to affect only the data matrix).
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The matrix E is sought to minimize the Frobenius norm

min
x,E

‖E‖F subject to (A + E)x = b ,

i.e., b ∈ R (A + E). In words, we look for the minimal correction (in the Frobenius
norm) of A such that the corrected system is compatible.

While in LS or DLS the correction is restricted only to the vector b or the matrix
A, respectively (which corresponds to the assumption that all errors are confined
to the vector of observations or the system matrix), in the total least squares (TLS)
also called orthogonal regression the correction is allowed to compensate for errors
in the system (data) matrix A as well as in the vector of observations b. Thus in
TLS, E and g are sought to minimize the Frobenius norm in

min
x,E,g

∥∥ [ g E
] ∥∥

F
subject to (A + E)x = b + g , (1.3)

i.e., (b + g) ∈ R (A + E).
In all cases we look for a minimal correction such that the corrected system is

compatible. The LS, DLS and TLS problems have statistical relevance for different
situations, see Van Huffel and Vandewalle [84] for an excellent discussion and history.
This book also carefully delineated the TLS theory and how it is related to LS. For
comparison of the LS and the TLS solutions of (1.1) see also [88, 89].

From the definition of the LS solution it follows that the corrected right-hand
side is the orthogonal projection of b onto the space generated by the columns of A.
The LS solution always exists but it may be nonunique. Therefore the minimum
2-norm LS solution is defined, that is equal to

xLS ≡ A† b ,

where A† denotes the Moore-Penrose pseudoinverse of the matrix A, see, e.g., [32,
p. 257]; such solution is naturally unique. Numerical methods for computing LS
solution are direct (based on singular value decomposition or QR decomposition),
or iterative (CGLS [40, 77] or LSQR [59, 60]); see also the classical books [52, 7].
The extension of the least squares concept to problems with multiple right-hand
sides (1.2) is straightforward. As explained before, the matrix A does not change in
the LS concept, thus the LS problem (1.2) with the matrix right-hand side B can
be replaced by d independent LS problems (1.1) with the single right-hand sides –
the columns of B. Putting these d independent solutions together gives the solution
of the original problem. Consequently, the unique minimum norm LS solution is
equal to

XLS ≡ A† B .

Unfortunately, the DLS and the TLS concepts applied on problems with multiple
right-hand sides yield much more difficulties. In particular, the solution can not be,
in general, rewritten as a set of solutions of independent problems with single right-
hand sides – columns of B, see also [84].

In the following section it is shown how the concept of the scaled TLS unifies
all the mentioned concepts LS, DLS, TLS. Consequently the LS and DLS concepts
are interpreted and analyzed as a limit cases of the scaled TLS concept, see also
[61, 62, 63].

The analysis of the TLS solution for the single right-hand side case is briefly
discussed further in this chapter, see also [31, 84, 64]. Analysis of the TLS formu-
lation in the multiple right-hand sides case (1.2) is discussed in [84], and it is one
of the main goals of this thesis.
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1.2.1 Scaled TLS and the importance of the TLS concept

All the mentioned concepts LS, DLS, TLS for solving (1.1) can be unified by con-
sidering the following very general scaled TLS problem (ScTLS, STLS), [61, 62], see
also the work of B. D. Rao [67], who called it weighted TLS. For a given ϑ > 0,
consider the problem

min
x̃,Ẽ,g̃

∥∥ [ g̃ ϑ Ẽ
] ∥∥

F
subject to (A + Ẽ) x̃ = b + g̃ . (1.4)

Here the relative sizes of the corrections in A and b are determined by a real param-
eter ϑ > 0. As ϑ −→ 0 in the ScTLS formulation, it leads to Ẽ = 0 and allows
arbitrary g̃, and thus it approaches the LS formulation. When ϑ = 1 the ScTLS
problem obviously coincides with the TLS formulation. The case ϑ −→ ∞ requires
g̃ −→ 0 leading to the DLS. See the papers [61, 62].

The formulation of the ScTLS problem can be used in a slightly different form.
For any positive bounded ϑ, substitute g ≡ g̃ ϑ, x ≡ x̃ and E ≡ Ẽ to obtain the
following new formulation of the ScTLS problem. For a given ϑ > 0,

min
x,E,g

∥∥ [ g E
] ∥∥

F
subject to (A + E)xϑ = b ϑ + g . (1.5)

In [61, 62] x = x (ϑ) that minimizes (1.5) is called the ScTLS solution of (1.5).
And in analogy with the TLS problem, x (ϑ)ϑ is called the TLS solution of (1.5).
Consequently the ScTLS solution x = x (ϑ) of (1.5) is identical to the solution x̃ of
(1.4). Therefore all results and discussions based on (1.5) apply fully to the scaled
TLS problem (1.4). In particular, all the known TLS theory and algorithms can be
applied directly to (1.5). The equivalence of (1.5) and (1.4) is extremely useful.

Using ϑ can have a statistical significance. Consider a model where the com-
ponents of A are known to have independent zero-mean random error of equal
standard deviation δA. Suppose also that the components of b have been observed
with independent zero-mean random errors of equal standard deviation δb, and that
the errors in b and A are independent. Taking ϑ = δA/δb in (1.5) will ensure that
all the errors in that model have equal standard deviation (and thus variance), and
(1.5) is an appropriate formulation for providing estimates. This agrees with the
limiting behavior described above, for clearly if δA = 0 and δb �= 0, then the LS is
a suitable choice, while if δA �= 0 and δb = 0, then the DLS is a suitable choice.
However (1.5) can also be useful outside any statistical context, see [63].

Unifying the LS, DLS and TLS concepts using the ScTLS formulation (1.5) can
be straightforwardly extended to the multiple right-hand side case (1.2). Because
the TLS theory can be applied to the ScTLS problems, it is very important to
understand the TLS formulation.

Remark 1.1. In some applications it is suitable to preprocess the input data [ b |A ]
or [ B |A ] before solving a given problem. Typically weighting of individual equations
and/or scaling of unknowns is used. For example:

(i) In [31], a problem with single right-hand side is considered in the form

(W AS−1) (S x) ≈ (W b) ,

where W = diag (w1 , . . . , wm ) and S = diag ( s1 , . . . , sn ) are diagonal
weighting and scaling matrices, respectively.

(ii) The so called mixed LS-TLS problem, the case when some columns of the data
matrix A are known exactly and the rest of columns of A contains errors, can
also be viewed as a scaling, see [84, §3.6.3, p. 92].
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1.3 TLS problem

In this section the theory of solving the TLS problems with single right-hand sides
is summarized. For better explanation and understanding of presented theory in-
cluding detailed proofs we refer to [31, 84].

In the whole section we consider AT b �= 0, in particular A �= 0, b �= 0. First,
it is worth to note that the TLS problem may not have a solution for a given data
A, b, see the following example.

Example 1.1. Consider the simple linear approximation problem[
1 0
0 0

] [
x1

x2

]
≈
[

1
1

]
.

The TLS method seeks the smallest correction [ g |E ] such that the resulting system
is compatible. Since the original problem is incompatible, for any corrections E, g
that makes it compatible, there exists a positive number ε < ‖[ g |E ]‖F such that[

1 0
0 ε

] [
x1

x2

]
=
[

1
1

]
.

is compatible too. Since the Frobenius norm of the new correction is equal to ε there
is no minimal correction. Only a nonoptimal solution of the original problem can
be obtained.

Moreover, the solution of the corrected system with the (nonoptimal) correction
chosen as [

g E
] ≡

[
0 0 0
0 0 ε

]
,

∥∥ [ g E
] ∥∥

F
= ε ,

is x = [ 1 , ε−1 ]T . With ε −→ 0, the norm of this nonoptimal solution grows
to infinity, ‖x‖ −→ ∞, and, furthermore, this solution depends on the arbitrarily
chosen number ε.

Example 1.1 is taken over [31] and it illustrates that the TLS problem may not have
a solution. Here the minimal correction does not exist and when we try to reach the
greatest lower bound of the norm of the correction, the corresponding nonoptimal
solution grows to infinity (in norm) and depends on an arbitrary value.

Further in the text, in Example 1.2, it is shown that for any problem which
does not have a TLS solution the growing of the norm and the dependence on an
arbitrary data (which is here given through the special choice of the correction
matrix [ g |E ]) is a general behavior of nonoptimal solutions.

In [31] a sufficient condition for existence of a TLS solution is given. We follow
the technique used in [31] to obtain a solution of (1.3). Analysis of several different
cases that can occur yields different approaches to solving the TLS problem. We
focus on each of them.

1.3.1 Basic solution by Golub and Van Loan

Consider an orthogonally invariant linear approximation problem (1.1)

Ax ≈ b

or, equivalently, [
b A

] [ − 1
x

]
≈ 0 . (1.6)
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In order to simplify the notation assume that m > n (add zero rows if necessary).
Denote σ′

j ≡ σj (A) the jth largest singular value of A, and u′
j and v′j the cor-

responding left and right singular vectors, respectively, j = 1 , . . . , n. Further
denote σj ≡ σj ([ b |A ]) the jth largest singular value of [ b |A ], and uj and vj the
corresponding left and right singular vectors, respectively, j = 1 , . . . , n + 1.

Let A be of full column rank (i.e. σ′
n > 0 and, subsequently, σn+1 = 0 iff the

system (1.1) is compatible) and let σn+1 be simple. Define the correction matrix
[ g |E ] ≡ − un+1 σn+1 vT

n+1, ‖[ g |E ]‖F = ‖[ g |E ]‖ = σn+1. The corrected matrix
[ b + g |A + E ] represents, by Eckart-Young-Mirsky theorem (see [84, Theorem2.3,
p. 31]), the unique best rank n approximation of [ b |A ] in the Frobenius norm (and
also in the 2-norm), see also Theorem2.2. Since σn+1 is simple, the correction as
well as the corrected matrices are unique. The right singular vector vn+1 represents
a basis of the null space of the corrected matrix, i.e. [ b + g |A + E ] vn+1 = 0.

If the first component of the vector vn+1 is nonzero, i.e. γ ≡ eT
1 vn+1 �= 0, then

scaling vn+1 such that the first component is equal to−1 gives[ −1
xTLS

]
≡ − 1

γ
vn+1 , and

[
b + g A + E

] [ −1
xTLS

]
= 0 ;

compare with (1.6). Because σn+1 is simple, the corrected and the correction ma-
trices are unique, thus the vector xTLS represents the unique TLS solution of the
problem (1.3). This solution can be expressed in the closed form

xTLS ≡ (AT A − σ2
n+1 In)−1 AT b ,

see [31, 84].
If the first component of the vector vn+1 is zero, i.e. γ ≡ eT

1 vn+1 = 0, then
the TLS problem (1.3) does not have a solution, see also [31, 84].

Golub and Van Loan give in [31] a sufficient condition for the existence of the
TLS solution, here formulated in the following theorem.

Theorem 1.1. Let σ′
j be the jth largest singular value of A ∈ Rm×n and σj the

jth largest singular value of [ b |A ] with vj the corresponding right singular vector,
m > n. If

σ′
n > σn+1 , (1.7)

then σn > σn+1 and eT
1 vn+1 �= 0.

The first part follows immediately from the interlacing theorem for singular values,
see [79], or [66, p. 203], or see Theorem 2.1 with Remark 2.3, the inequalities (2.12),
further in the text. For the proof of the second part see for example [84, proof of
Lemma 3.1, pp. 64–65]. For a more general form of Theorem1.1, see Theorem 3.1
together with Corollary 3.1 in the further text.

The Golub, Van Loan condition (1.7) ensures that the smallest singular value of
the extended matrix [ b |A ] is simple and the corresponding right singular vector has
nonzero first component, and, subsequently, it ensures existence of the TLS solution.
This condition is, however, intricate because it is only sufficient but not necessary
for the existence of a TLS solution. (In fact, the condition (1.7) is necessary and
sufficient for the existence of the unique TLS solution.) If σ′

n = σn+1, then it may
happen either σn > σn+1 with eT

1 vn+1 = 0, which means that the TLS problem
does not have a solution, or σn = σn+1. In this case a TLS solution still may exist
or may not exist. Thus, now we focus on the case when the smallest singular value
of [ b |A ] is multiple, i.e. σn = σn+1.
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1.3.2 Problems with nonunique TLS solution

We still assume AT b �= 0 and m > n. Let A be of full column rank and let σn+1

be multiple. In particular there is an integer p such that

σp > σp+1 = . . . = σn+1 .

The case p = n reduces to the previous case. If p = 0, i.e. σ1 = . . . = σn+1, then
[ b |A ]T [ b |A ] = σ2

1 In+1, and thus the columns of [ b |A ] are mutually orthogonal
(and σp is nonexistent). In this case the TLS problem has a nonunique solution,
and from the construction below it will be clear that the minimum 2-norm TLS
solution is trivial, xTLS = 0. Therefore for simplification of notation we consider
0 < p < n in the further text.

Since σn+1 is multiple, a minimal correction matrix reducing the rank of [ b |A ] to
n is no longer unique. For an arbitrary given matrix Q ∈ R(n−p+1)×(n−p+1), Q−1 =
QT , denote ṽ ≡ [ vp+1 , . . . , vn+1 ] Q en−p+1, a unit vector from the right singu-
lar vector subspace associated with σn+1, and ũ ≡ [ up+1 , . . . , un+1 ] Q en−p+1,
the corresponding unit vector from the left singular vector subspace. The matrix
[ g |E ] ≡ − ũ σn+1 ṽT , ‖[ g |E ]‖F = ‖[ g |E ]‖ = σn+1, represents, by Eckart-
Young-Mirsky theorem, a minimal norm correction such that [ b + g |A + E ] is a
rank n approximation of [ b |A ]. Because Q is arbitrary, the correction as well as
the corrected matrices are not unique.

Similarly to the previous section, if eT
1 ṽ �= 0, then ṽ can be used for the con-

struction of a solution of the TLS problem (1.3), by scaling ṽ such that the first
component is equal to −1. Consequently, if there exists a vector with nonzero first
component in the subspace R ([ vp+1 , . . . , vn+1 ]), i.e. if eT

1 [ vp+1 , . . . , vn+1 ] �= 0,
then the TLS problem (1.3) has a solution, but, clearly, this solution is not unique.
The goal is to find the minimum 2-norm TLS solution.

Denote ṽ = ( γ̃ , wT )T ; the norm of the solution constructed from ṽ is equal
to γ̃−1 ‖w‖, where ‖w‖2 = ‖ṽ‖2 − γ̃2 = 1 − γ̃2. Thus the goal is to minimize
γ̃−1 (1− γ̃2)1/2, i.e., to maximize γ̃. The minimum 2-norm TLS solution is obtained
by choosing Q such that the first component of ṽ is maximal over all unit vectors in
R ([ vp+1 , . . . , vn+1 ]). Put Q ≡ H , the Householder reflection matrix such that(

eT
1

[
vp+1 , . . . , vn+1

] )
H =

[
0 , . . . , 0 , γ

]
, where

γ ≡ ∥∥ eT
1

[
vp+1 , . . . , vn+1

] ∥∥ ,

and put v ≡ [ vp+1 , . . . , vn+1 ] H en−p+1. Scaling v gives the minimum 2-norm
TLS solution[ −1

xTLS

]
≡ − 1

γ

[
vp+1 , . . . , vn+1

]
H en−p+1 = − 1

γ
v ,

with ‖xTLS‖ = γ−1 (1 − γ2)1/2. This minimum 2-norm TLS solution can be ex-
pressed in the closed form

xTLS ≡ (AT A − σ2
n+1 In)−1 AT b ,

see [31, 84].
If all (unit) vectors in the subspace R ([ vp+1 , . . . , vn+1 ]) have zero first com-

ponents, i.e. if eT
1 [ vp+1 , . . . , vn+1 ] = 0, then the TLS problem (1.3) does not

have a solution, see also [31, 84].

Van Huffel and Vandewalle give in [84] the following equivalence which general-
izes Theorem1.1.
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Theorem 1.2. Let σ′
j be the jth largest singular value of A ∈ Rm×n and σj the

jth largest singular value of [ b |A ] with vj the corresponding right singular vector,
m > n. Then the following two conditions are equivalent:

(i) σ′
p > σp+1 = . . . = σn+1 ,

(ii) σp > σp+1 = . . . = σn+1 and eT
1 [ vp+1 , . . . , vn+1 ] �= 0 .

For a more general form of this theorem and its proof see [84, Corollary 3.4, p. 65],
and also Corollary3.2 in the further text.

In fact, the condition (i) is necessary and sufficient for the existence of the TLS
solution. If p = n, then it reduces to (1.7) and the statement of this theorem says
that σ′

n > σn iff σn > σn+1 with eT
1 vn+1 �= 0 (i.e., it reduces to the necessary and

sufficient condition for existence the unique TLS solution, as mentioned before).
But the condition (i) is very complicated because it combines singular values of the
matrix A and the extended matrix [ b |A ] together with their multiplicities. The
situation becomes transparent with the usage of the core problem concept [64], see
also Section 1.4.

In both Section 1.3.1 and Section 1.3.2 we omitted to analyze the problems with
rank deficient A. Thus let A be rank deficient, i.e. σ′

n = 0. If b �∈ R (A) (other-
wise there exists a solution in the classical meaning, and x ≡ A† b represents the
minimum 2-norm solution), then singular values σ′

n ≡ σn+1 = 0 have the same
multiplicities, all the right singular vectors corresponding to σn+1 have zero first
components, and thus the TLS problem does not have a solution. This assertion
will be clarified through the core problem concept.

Now we focus on the case when the right singular vector subspace associated
with the smallest singular value of [ b |A ] does not contain any vector with nonzero
first component. Here as well as in the previous section is curtly asserted that in
this case the TLS problem (1.3) does not have a solution. The following section
introduces the so called nongeneric concept used to solving such problems. For more
detailed discussion about the nonexistence of a TLS solution, as well as about the
meaning of the nongeneric solution we refer to the core problem theory [64] in the
further text, see Section 1.4 and particularly Section 1.4.2, CaseC.

1.3.3 Nongeneric solution by Van Huffel and Vandewalle

An unpleasant situation occurs in both previous cases (in Section 1.3.1 and Sec-
tion 1.3.2) when the right singular vector subspace associated with the smallest
singular value σn+1 of [ b |A ] does not contain a vector with nonzero first compo-
nent. This situation is provided by the fact that the correlation between columns
of the matrix A is stronger than the correlation between the column space of A
and the right-hand side b. The extreme case when the columns of A are linearly
dependent and the problem is incompatible is illustrated by Example 1.1 above. In
such case there is no right singular vector that can be used for construction of a
solution.

The idea of the so called nongeneric concept is the following, see [84]: because
the solution can not be constructed from a vector corresponding to the smallest
singular value, we try to use another, bigger, singular value and the corresponding
left and right singular vectors for construction of a correction matrix and a solution.
But, such a solution does not solve the original TLS problem (1.3).

Recall that we still assume AT b �= 0 and m > n. Let σt > σn+1 be the
smallest singular value of [ b |A ] such that eT

1 vt �= 0, i.e. eT
1 [ vt+1 , . . . , vn+1 ] = 0

(this case includes all incompatible problems with rank deficient A, as mentioned).
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Since V ≡ [ v1 , . . . , vn+1 ] is an orthogonal matrix, such a singular value always
exists. Put [ g |E ] ≡ ut σt vT

t , ‖[ g |E ]‖F = ‖[ g |E ]‖ = σt. Similarly to the
previous cases [ b + g |A + E ] vt = 0 and thus scaling the vector vt such that the
first component is equal to −1 gives the solution of the corrected system. This
solution is in [84] called nongeneric solution.

Obviously, if σt−1 = σt (with t > 1) or σt = σt+1 (with t < n), then the
correction as well as the solution are not unique. In the case of nonuniqueness
the goal is to find the minimum 2-norm nongeneric solution. In order to handle a
possible nonuniqueness define an integer p̃ such that

σp̃ > σp̃+1 = . . . = σt ≥ . . . ≥ σp > σp+1 = . . . = σn+1 .

If p̃ = 0, then it can be shown that the right-hand side b is orthogonal to the column
space of A, and from the construction below it will be clear that the minimum 2-
norm nongeneric solution becomes trivial, xNGN = 0 (and σp̃ is nonexistent).

Similarly to Section 1.3.2, define H ∈ R(n−p̃+1)×(n−p̃+1), the Householder reflec-
tion matrix such that(

eT
1

[
vp̃+1 , . . . , vn+1

] )
H =

[
0 , . . . , 0 , γ

]
, where

γ ≡ ∥∥ eT
1

[
vp̃+1 , . . . , vn+1

] ∥∥ =
∥∥ eT

1

[
vp̃+1 , . . . , vt

] ∥∥ ,

and put u ≡ [ up̃+1 , . . . , un+1 ] H en−p̃+1, and v ≡ [ vp̃+1 , . . . , vn+1 ] H en−p̃+1.
Because eT

1 [ vt+1 , . . . , vn+1 ] = 0, the matrix H can be chosen such that it has
a block skew diagonal structure with two orthogonal blocks on the skew diago-
nal, with the lower left block the identity matrix In−t+1. Then the upper right
block H12 ∈ R(t−p̃)×(t−p̃) represents the Householder reflection matrix such that
[ vp̃+1 , . . . , vt ] H12 = [ 0 , . . . , 0 , γ ]. Obviously v ∈ R ( vp̃+1 , . . . , vt ) and v ⊥
R ( vt̃+1 , . . . , vn+1 ). The matrix [ g |E ] ≡ − u σt vT has Frobenius norm (and also
the 2-norm) equal to σt. Scaling v such that the first component is equal to −1
gives the minimum 2-norm nongeneric solution[ −1

xNGN

]
≡ − 1

γ

[
vp̃+1 , . . . , vn+1

]
H en−p̃+1 = − 1

γ
v ,

see [84].

The following remark specifies the minimization problem which is solved by the
minimum 2-norm nongeneric solution.

Remark 1.2. The nongeneric solution xNGN defined above represents a solution
of the constrained minimization problem

min
x,E,g

∥∥ [ g E
] ∥∥

F
subject to (A + E)x = b + g

with the constraint
[

g E
] [

vt+1 , . . . , vn+1

]
= 0 .

(1.8)

The minimum norm nongeneric solution represents the minimum norm solution of
(1.8). See also [84, Definition 3.2, pp. 68–69].

The nongeneric solution is also related to the so called truncated TLS problem,
see [84, note on p. 82], or [88, 17].

The additional constraint in Remark 1.2 ensures that the correction matrix is con-
structed from the right singular vector which is orthogonal to the unwanted direc-
tions vt+1 , . . . , vn+1. Without this constraint, (1.8) reduces to (1.3), and, e.g.,
the unit vector ṽ ≡ sin(α) vt + cos(α) vn+1, with nonzero first component for any
0 < α ≤ π/2, can be used for the construction of a solution. Obviously, for
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α −→ 0 the norm of the correction matrix constructed using ṽ goes to the greatest
lower bound equal to σn+1, but, simultaneously the norm of the solution goes to
the infinity. Thus the TLS problem (1.3) does not have a solution. Obviously, the
minimum norm nongeneric solution does not solve (1.3).

From the algorithmic point of view, the minimum 2-norm nongeneric solution
concept is a consistent extension of the minimum 2-norm TLS solution, see e.g. the
TLS classical algorithm in [84, Algorithm 3.1, pp. 87–88], or, alternatively, Algo-
rithm 3.1 in the further text. This algorithm computes, in general, the minimum
2-norm nongeneric solution, and, for d = 1, it automatically returns the minimum
2-norm TLS solution if it exits.

Now, we already described all the possibilities that can occur. It remains to
justify the addition of zero rows in (1.1) in order to satisfy the condition m > n,
and to show that the incompatible problem with rank deficient matrix A does not
have a TLS solution. Both can be easily shown through the core problem concept.

1.4 Core problem theory of Paige and Strakoš

A new contribution to the theory and computation of linear approximation problems
was published in a series of papers [61, 62, 64]. Here the authors define a core
problem within the orthogonally (unitarily) invariant linear approximation problem
(1.1). It is proposed to orthogonally transform the original approximation problems
to a block form that allows to separate the necessary and sufficient information
present in the data A, b, from the redundant information. It is shown that the so
called core reduction represents a theoretical basis for several well known techniques
as well as for new future developments.

Assuming AT b �= 0 and that the approximation problem (1.1) is orthogonally
invariant, i.e. that the solution is independent on a particular choice of bases in Rm

and Rn, it easy to see that there exists an orthogonal transformation of the form

PT
[

b A
] [ 1 0

0 Q

]
= PT

[
b AQ

]
=
[

b1 A11 0
0 0 A22

]
, (1.9)

where P−1 = PT , Q−1 = QT , and where A22 might have row and/or column
dimensions equal to zero. In the nontrivial case (when A22 has at least one row
and one column, even if A22 = 0) both the singular value decompositions (SVD) of
[ b |A ] and A can be easily got as a direct sum of the SVDs of the blocks [ b1 |A11 ]
and A22, and A11 and A22, respectively. The original approximation problem Ax ≈
b is in this way decomposed into two independent approximation subproblems,

A11 x1 ≈ b1 , A22 x2 ≈ 0 , where x ≡ Q

[
x1

x2

]
.

The second subproblem A22 x2 ≈ 0 has a trivial solution x2 = 0, and thus only
the first subproblem A11 x1 ≈ b1 needs to be solved, see [64]. Paige and Strakoš
formulate the following definition.

Definition 1.1 (Core problem). The subproblem A11 x1 ≈ b1 is a core problem
within the approximation problem Ax ≈ b if [ b1 |A11 ] is minimally dimensioned
and A22 maximally dimensioned subject to (1.9).

For any transformation (1.9) the subproblem A11 x1 ≈ b1 contains all the sufficient
information for solving the original problem. Since the core problem is the minimally
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dimensioned subproblem, i.e. the subproblem can not be reduced more, it must
contain all the sufficient and only the necessary information for solving Ax ≈ b.

Understanding of the minimal dimensionality of A11 x1 ≈ b1 can be gained by
the following construction, which shows how to concentrate the relevant information
into A11 and b1, while moving the irrelevant and redundant information into A22,
see [64]. Let A have rank r and consider the SVD

A = U ′ Σ′ (V ′)T , Σ′ ≡
[

Ξ 0
0 0

]
≡
[

diag (σ′
1 , . . . , σ′

r ) 0
0 0

]
,

with singular values σ′
1 ≥ . . . ≥ σ′

r > 0, U ′ ∈ Rm×m, (U ′)−1 = (U ′)T , and
V ′ ∈ Rn×n, (V ′)−1 = (V ′)T . Moreover assume only k of the nonzero singular
values of A to be distinct. Then

(U ′)T
[

b AV ′ ] =
[

c Ξ 0
ck+1 0 0

]
, and c ≡ [ cT

1 , . . . , cT
k

]T
,

where the partitioning of c respects the multiplicities of the singular values of A.
The singular values are unique in any SVD representation. But their ordering,

and sometimes some singular vectors, are not unique. In order to obtain the core
problem, the matrix (U ′)T [ b |AV ′ ] will be transformed further, while maintaining
the SVD of A. For cj , choose an orthogonal matrix Hj (e.g. the Householder
reflection matrix) such that Hj cj = e1 δj , where δj ≡ ‖cj‖, for j = 1 , . . . , k , k+
1. Then put

G ≡ diag (H1 , . . . , Hk , Hk+1 ) ,

H ≡ diag (H1 , . . . , Hk , In−r ) ,

and replace the matrix U ′ by U ′ G and V ′ by V ′ H . This transformation will leave
Σ′ unchanged and therefore preserves the SVD of A. In this way the vector c is
transformed into a vector having at most one nonzero component corresponding to
each block of equal singular values of A, and therefore the original right-hand side
vector b is transformed into a vector having at most k + 1 nonzero entries. Clearly,
δj �= 0, j = 1 , . . . , k, if and only if the right-hand side b has nonzero projection
onto the corresponding left singular vector subspace of A (i.e., δ1 = . . . = δk = 0
iff b ⊥ R), and finally δk+1 �= 0 iff b �∈ R (A). Next permute the columns of U ′ G
and V ′ H identically, in order to move the zero elements in the transformed c to the
bottom of this vector, leaving d, the subvector of c with nonzero components only,
at the top, while keeping Ξ diagonal. Finally if δk+1 �= 0 move its row so that δk+1

is immediately below d by a further permutation from the left to give, with obvious
new notation and indexing,

(U ′ GΠL )T [
b A (V ′ H ΠR )

]
=

⎡
⎣ d Ξ1 0

δk+1 0 0
0 0 Ξ2

⎤
⎦

≡
[

b1 A11 0
0 0 A22

]
,

(1.10)

the matrices ΠL, ΠR denote the permutations from the left and right, respectively,
the vector d contains only the nonzero scalars δ1 , . . . , δk, the matrix Ξ1 is diagonal
with simple and nonzero singular values; the row beginning with the scalar δk+1

is nonexistent iff the problem (1.1) is compatible. The final partitioning in (1.10)
corresponds to that in (1.9) with P ≡ U ′ GΠL and Q ≡ V ′ H ΠR. Denote m̄, and
n̄ ≡ k the dimensions in (1.10) such that A11 ∈ Rm̄×n̄, x1 ∈ Rn̄, and b1 ∈ Rm̄;
obviously n̄ ≤ m̄ ≤ n̄ + 1.
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It can be easily shown that the subproblem A11 x1 ≈ b1 obtained by the trans-
formation process (1.10) described above has indeed the desired minimality prop-
erty, and thus it represents the core problem within Ax ≈ b, see also [64]. The core
problem in the form given in (1.10) is called the SVD form of the core problem.

Remark 1.3. Let Ax ≈ b be an approximation problem with m ≤ n. From the
construction of the SVD form of the core problem it immediately follows that the ad-
dition of zero rows in order to satisfy the condition m > n required in Section 1.3.1,
1.3.2, or 1.3.3, does not change the core problem within Ax ≈ b. It extends only
the matrix A22 which does not involve the solution x ≡ Q [ xT

1 | 0 ]T .

Remark 1.4. Let Ax ≈ b be an approximation problem and AT b = 0. It is
easy to see that core reduction results in a trivial matrix A11, i.e., with no columns.
Moreover, if b = 0, then both b1 and A11 are trivial having no rows. In these cases
the solution x ≡ Q [ xT

1 | 0 ]T = 0 is equal to zero.

A decomposition of the form (1.9) can also be computed directly by choosing
orthogonal matrices P and Q in order to reduce [ b |A ] to a real upper bidiagonal
matrix, see [64]. It can be done using for example Householder reflection matrices,
see [32, §5.4.3, pp. 251–252]. The first zero element on the main diagonal or on the
first superdiagonal determines the desired partitioning. The matrix A22 needs not
be bidiagonalized. Alternatively the partial Golub-Kahan iterative bidiagonalization
algorithm [27, 57] can be used. Putting w0 ≡ 0 and the starting vector s1 ≡ b/β1,
where β1 ≡ ‖b‖, the algorithm computes for j = 1 , 2 , . . .

wj αj ≡ AT sj − wj−1 βj ,

sj+1 βj+1 ≡ Awj − sj αj ,
(1.11)

where ‖wj‖ = 1, αj ≥ 0, and ‖sj+1‖ = 1, βj+1 ≥ 0, until αj = 0 or βj+1 = 0,
or until the dimensions of A are exceeded, i.e. j = min {m , n }.

We present, for completeness, the basic properties of the Golub-Kahan bidiag-
onalization as given in [57]. Consider αj > 0, βj > 0, for j = 1 , . . . , k, and
βk+1 > 0, and denote Sj ≡ [ s1 , . . . , sj ], Wj ≡ [ w1 , . . . , wj ],

Lj ≡

⎡
⎢⎢⎢⎣

α1

β2 α2

. . .
. . .

βj αj

⎤
⎥⎥⎥⎦ ∈ R

j×j and Lj+ ≡
[

Lj

βj+1e
T
j

]
∈ R

(j+1)×j .

Consequently AT Sj = Wj LT
j , AWj = Sj+1 Lj+, giving the fundamental proper-

ties ST
j+1 Sj+1 = Ij+1, WT

j Wj = Ij , and ST
j AWj = Lj, WT

j AT Sj+1 = LT
j+,

for j = 1 , . . . , t. Summarizing, the Golub-Kahan bidiagonalization (1.11) of the
matrix A with s1 ≡ b/‖b‖ yields one of the following two situations.

Case 1. If αj > 0, βj > 0, j = 1 , . . . , ñ, and βñ+1 = 0 or ñ = m, then
ST

ñ AWñ = Lñ and

[
b̃1 Ã11

] ≡ ST
ñ

[
b AWñ

]
=

⎡
⎢⎢⎢⎣

β1 α1

β2 α2

. . .
. . .

βñ αñ

⎤
⎥⎥⎥⎦ . (1.12)

Case 2. If αj > 0, βj > 0, j = 1 , . . . , ñ, βñ+1 > 0, and αñ+1 = 0 or
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ñ = n, then ST
ñ+1 AWñ = Lñ+ and

[
b̃1 Ã11

] ≡ ST
ñ+1

[
b AWñ

]
=

⎡
⎢⎢⎢⎢⎢⎣

β1 α1

β2 α2

. . .
. . .

βñ αñ

βñ+1

⎤
⎥⎥⎥⎥⎥⎦ . (1.13)

In both cases, the matrices Sñ or Sñ+1, and Wñ represent the first ñ or ñ+1 columns
of the matrix P , and the first ñ columns of the matrix Q in (1.9), respectively.

The subproblems (1.12), (1.13) have many properties, see [64]; some important
of them can be easily derived from the well known properties of tridiagonal matrices.
The following definition introduces a commonly used terminology [14, 21], and some
classical results are summarized in the subsequent theorem [90, 66] and lemma.

Definition 1.2 (Jacobi matrix). A symmetric tridiagonal matrix with positive off-
diagonal components is called Jacobi matrix.

Theorem 1.3. Let H ∈ Rρ×ρ be a (symmetric tridiagonal) Jacobi matrix. Denote
by Hj ∈ Rj×j its leading principal submatrix, j = 1 , . . . , ρ. Then the following
(characteristic) polynomials,

p0 (λ) ≡ 1 ,

p1 (λ) ≡ H1 − λ ,

p2 (λ) ≡ det (H2 − λ I2) ,

...

pρ−1 (λ) ≡ det (Hρ−1 − λ Iρ−1) ,

pρ (λ) ≡ det (H − λ Iρ) ,

(1.14)

have the Sturm sequence property, i.e., two subsequent polynomials can not have
the same root, and, moreover, zeros of pj−1 (λ) and pj (λ) strictly interlace, for
j = 1 , . . . , ρ.

Proof. Denote hi,j ≡ eT
i H ej , recall that hi,j = hj,i, and, if |i − j| = 1, then

hi,j �= 0. Obviously

p1 (λ) = (h1,1 − λ) p0 (λ) ,

pj (λ) = (hj,j − λ) pj−1 (λ) − h2
j,j−1 pj−2 (λ) ,

for j = 2 , . . . , ρ. Suppose that there exists ξ ∈ R such that pk (ξ) = pk−1 (ξ) = 0
for some k ≥ 2. Since hk,k−1 �= 0, we have pk−2 (ξ) = 0. Induction gives
p0 (ξ) = 0 which contradicts the fact that p0 (λ) = 1. Thus two subsequent
polynomials can not have the same root. See also [90, Chapter 5, §36., §37., pp. 299–
302].

The following rest of the proof is taken over [46, Chapter 4, p. 168]. The sepa-
ration property can be proved by mathematical induction. That is, a simple plot of
p2 (λ) shows that the simple zero of p1 (λ) separates the two simple zeros of p2 (λ).
Assume that the j − 2 simple zeros of pj−2 (λ) separate the j − 1 simple zeros of
pj−1 (λ). Now, from (1.14), at each zero of pj−1 (λ), the sign of pj (λ) is opposite
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to the sign of pj−2 (λ). But, by the induction hypothesis, pj−2 (λ) changes sign be-
tween each pair of neighboring zeros of pj−1 (λ). Therefore, pj (λ) also changes sign
and hence has a zero between each neighboring pair of zeros of pj−1 (λ). Now

lim
λ→+∞

pj (λ) = +∞ , lim
λ→−∞

pj (λ) = (−1)j ∞ , j = 1 , 2 , . . . .

Therefore pj (λ) has a zero to the right of the largest zero of pj−1 (λ) and a zero
to the left of the smallest zero of pj−1 (λ). On the other hand, pj (λ) can have
no more than j zeros. Therefore, we have shown that the j − 1 simple zeros of
pj−1 (λ) separate the j simple zeros of pj (λ). This proves the strict interlacing (or
separation) property in the theorem.

The second part of the proof can be shown alternatively as follows. Because the
roots of pj (λ) represent eigenvalues of Tj, the interlacing theorem for eigenvalues,
see [66, p. 203] (see also Theorem 2.1 and Remark 2.3, the inequalities (2.12), in
the further text) gives the strict interlacing property.

Thus Theorem1.3 says that the eigenvalues of Hj are strictly interlaced by the
eigenvalues of Hj−1, i.e.,

λ1 (Hj) > λ1 (Hj−1) > λ2 (Hj) > . . . > λj−1 (Hj−1) > λj (Hj) , (1.15)

and thus eigenvalues of Hj must be simple. Consequently, an arbitrary (symmetric
tridiagonal) Jacobi matrix has distinct (and simple) eigenvalues.

Lemma 1.1. Let H ∈ Rρ×ρ be a (symmetric tridiagonal) Jacobi matrix. Then:

(i) The matrix H has distinct eigenvalues.

(ii) The first (as well as the last) components of all eigenvectors of H are nonzero.

Proof. Property (i) is the direct consequence of Theorem1.3 as shown above. Fur-
ther, (ii) can be shown by contradiction. Let x, ‖x‖ = 1, H x = xλ, with
x1 ≡ eT

1 x = 0. Equating the corresponding components in H x = xλ gives
h1,1 x1 + h1,2 x2 = x1 λ, and hj−1,j xj−1 + hj,j xj + hj,j+1 xj+1 = xj λ, for j =
2 , . . . , ρ − 1. Since hj,j+1 �= 0 we have xj+1 = 0, for j = 1 , . . . , ρ − 1, which
contradicts ‖x‖ = 1. Both (i) and (ii) are the basic and well known properties of
Jacobi matrices, see e.g. [66, Lemma 7.7.1, Theorem 7.9.3].

Now the properties of (1.12), (1.13) can be analyzed. Because αj > 0 and
βj > 0 for j = 1 , . . . , ñ in both cases (1.12) and (1.13), it is easy to see that the
tridiagonal matrix

ÃT
11 Ã11 = LT

ñ Lñ + β2
ñ+1 eñ eT

ñ

=

⎡
⎢⎢⎢⎢⎣

α2
1 + β2

2 α2 β2

α2 β2 α2
2 + β2

3

. . .

. . .
. . . αñ βñ

αñ βñ α2
ñ + β2

ñ+1

⎤
⎥⎥⎥⎥⎦ ,

(1.16)

is a Jacobi matrix (in the compatible case βñ+1 = 0). Thus in both cases the
matrix Ã11 has simple singular values (square roots of eigenvalues of ÃT

11 Ã11), by
(i) in Lemma1.1. Obviously Ã11 is of full column rank (and [ b̃1 | Ã11 ] of full row
rank) in both cases, see e.g. [64, Remark 3.1]. Thus the singular values of Ã11 are
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nonzero. Further, the matrices

Ã11 ÃT
11 = Lñ LT

ñ =

⎡
⎢⎢⎢⎢⎣

α2
1 α1 β2

α1 β2 α2
2 + β2

2

. . .

. . .
. . . αñ−1 βñ

αñ−1 βñ α2
ñ + β2

ñ

⎤
⎥⎥⎥⎥⎦ , (1.17)

in Case 1, and

Ã11 ÃT
11 = Lñ+ LT

ñ+ =

⎡
⎢⎢⎢⎢⎣

α2
1 α1 β2

α1 β2 α2
2 + β2

2

. . .

. . .
. . . αñ βñ+1

αñ βñ+1 β2
ñ+1

⎤
⎥⎥⎥⎥⎦ , (1.18)

in Case 2, also represent Jacobi matrices. Eigenvectors of (1.17), (1.18) represent left
singular vectors of Ã11 ≡ Lñ and Ã11 ≡ Lñ+, respectively. Because b̃1 ≡ e1 β1, it
has nonzero projections onto all left (one dimensional) singular vector subspaces of
Ã11 in both cases, by (ii) in Lemma 1.1.

Consequently, the SVD-based reduction described by (1.10) applied on sub-
problems (1.12) or (1.13) can not reduce their dimensions more. Vice versa, since
(1.10) represents the core problem transformation, i.e. the dimensions of [ b1 |A11 ]
are minimal, the bidiagonalization of (1.10) can not terminate sooner than in the
(ñ + 1)st step; this happens either with βñ+1 = 0, in the compatible case, or with
αñ+1 = 0, in the incompatible case.

Thus the Golub-Kahan algorithm (1.11) yields the core problem, i.e., ñ ≡ n̄.
Particularly, the subproblems (1.12) and (1.13) represent the compatible and the
incompatible case, respectively. The core problem in the form Ã11 x̃1 ≈ b̃1 given
in (1.12), (1.13) is called the banded (bidiagonal) form of the core problem.

As shown, a subproblem representing the core problem has several properties
(that are independent on a particular form, e.g., SVD form, bidiagonal, or any
other). We summarize the most important of them:

(G1) The matrix A11 is of full column rank equal to n̄.

(G2) The right-hand side b1 is of full column rank (i.e., b1 is nonzero).

(G3) The matrices (U ′
j)

T b1 are of full row rank for all j, where U ′
j denotes an

orthonormal basis of the left singular vector subspace corresponding to the
jth distinct singular value of A11.

(G4) The matrix [ b1 |A11 ] is of full row rank.

(G5) The matrix A11 has no zero or multiple singular values, so any zero singular
values or repeats that A has, must appear in A22.

First we explain the property (G3) which looks complicated. The right-hand b1 is a
column vector, thus for any matrix U ′

j , (U ′
j)

T b1 is a column vector, which has full
row rank iff it is a nonzero scalar. The number of rows of (U ′

j)
T b1, i.e. the number of

columns of U ′
j, is identical to the dimension of the jth left singular vector subspace,

i.e. the multiplicity of the jth distinct thus singular value of A11, singular values
of A11 must be simple. Moreover, the right-hand side b1 has nonzero component
in all (one dimensional) left singular vector subspaces of A11. It is easy to see that
the property (G2) (which in the single right-hand side case reduces to the assertion
b1 �= 0) is implied by the property (G3) under the assumption AT b �= 0 (and thus
AT

11 b1 �= 0). Further, (G5) is also implied by (G3). Finally it can be shown, that
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property (G4) is implied by (G1) and (G3). (Even if the property (G2) seems trivial
it will be found useful in the multiple right-hand side case.)

Summarizing, it was shown that for any orthogonally invariant problem Ax ≈ b
there exists an orthogonal transformation of the form (1.9) yielding the core prob-
lem that has some notable properties. It contains all the necessary, and only the
sufficient information for solving the original problem. A solution of the original
problem can be given by x ≡ Q [ xT

1 | 0 ]T where x1 is the solution of the core prob-
lem. Consequently, we focus on the TLS formulation applied on the core problem,
in the next section.

1.4.1 Core problem and the TLS formulation

Let Ax ≈ b be a linear approximation problem and Ã11 x̃1 ≈ b̃1 the core problem
within Ax ≈ b in the bidiagonal form, either (1.12) or (1.13). Because αj > 0
and βj > 0 for j = 1 , . . . , n̄, the matrix (1.16), i.e. ÃT

11 Ã11, is a Jacobi matrix,
in both cases. Similarly, the matrix

[
b̃1 Ã11

]T [
b̃1 Ã11

]
=
[

b̃T
1 b̃1 b̃T

1 Ã11

ÃT
11 b̃1 ÃT

11 Ã11

]
(1.19)

is a Jacobi matrix – thus, all its eigenvalues are simple, all its eigenvectors have
nonzero first and last components, by Lemma 1.1. The matrix (1.19) contains (1.16)
as a trailing principal submatrix, which is crucial in the forthcoming analysis.

Note that Theorem1.3 can be easily reformulated for the characteristic polyno-
mials of the trailing principal submatrices, i.e., matrices Hj ∈ Rj×j obtained from
H ∈ Rρ×ρ by removing the first ρ − j rows and columns, j = 0 , . . . , ρ (in the
notation of Theorem1.3). Together with the interlacing theorem for eigenvalues,
see [66, p. 203] (see also Theorem 2.1 and Remark 2.3, the inequalities (2.12), in the
further text) this modification of Theorem1.3 implies the strict interlacing property
(1.15) for matrices (1.16), (1.19); see also discussion after Theorem1.3.

Thus the eigenvalues of [ b̃1 | Ã11 ]T [ b̃1 | Ã11 ] are strictly interlaced by the eigen-
values of ÃT

11 Ã11. Because the singular values are independent on the given form
of the core problem, we omit tildes in the further text; we obtain:

Case 1. In the compatible case (1.12), distinct and nonzero singular values
of A11 strictly interlace the singular values of [ b1 |A11 ] together with zero. But
here we are not interested in the compatible case, because the compatible problems
always have solution in the classical sense.

Case 2. In the incompatible case (1.13), both matrices A11 and [ b1 |A11 ] have
distinct and nonzero singular values and the singular values of A11 strictly interlace
the singular values of [ b1 |A11 ],

σn̄ (A11) > σn̄+1 ( [ b1 |A11 ] ) . (1.20)

Appending the right-hand side vector b1 to the core problem matrix A11 decreases
the smallest singular value. The core problem always satisfies the Golub, Van Loan
condition (1.7) and thus it always has the unique TLS solution (i.e., the smallest
singular value σn̄+1 ([ b1 |A11 ]) is simple and the corresponding right singular vector
has nonzero first component).

It remains to compare the solution x ≡ Q [ xT
1 | 0 ]T obtained using the core

problem transformation (1.9) to all the TLS formulation in [31, 84], presented also
in Sections 1.3.1, 1.3.2, and 1.3.3.
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1.4.2 Relation to earlier work

Let Ax ≈ b be a general linear approximation problem and A11 x1 ≈ b1 a core
problem within Ax ≈ b obtained by a transformation to the form (1.9). Denote
for simplicity x1 the unique TLS solution of this core problem. Now, the question
is, what this solution represents in the original variables.

As in Sections 1.3.1, 1.3.2, and 1.3.3, assume m > n (add zero rows if necessary).
Moreover we focus on the incompatible case, i.e. b �∈ R (A). Consequently the
matrix [ b1 |A11 ] is square and the matrix A22 is either square (iff m = n + 1),
or is has more rows than columns. Denote σmin (M) the smallest singular value of
M for simplicity (for all [ b1 |A11 ], A11 and A22, the index of the smallest singular
value is equal to the number of their columns). Recall that the SVD of [ b |A ] can
be obtained as a direct sum of SVDs of [ b1 |A11 ] and A22, just by extending the
singular vectors corresponding to the first block by zeros on the bottom and the
singular vectors corresponding to the second block by zeros on the top.

There are three different possibilities:
Case A. If

σmin (A22) > σmin ( [ b1 |A11 ] ) ,

then, because σmin (A11) > σmin ([ b1 |A11 ]) by (1.20), the smallest singular value
of [ b |A ] is simple and

min { σmin (A11) , σmin (A22) } ≡ σn (A) > σn+1 ( [ b |A ] ) ≡ σmin ( [ b1 |A11 ] ) .

Consequently the original problem Ax ≈ b has by (1.7) the unique TLS solution.
Consider the SVD of [ b1 |A11 ] = U1 Σ1 V T

1 and the SVD of A22 = U2 Σ2 V T
2 ,

the matrix of right singular vectors of the original problem is

V =
[

1 0
0 Q

]
V̄ , where V̄ ≡

[
V1 0
0 V2

]
Π ,

Π is a permutation matrix which sorts singular values of Σ1 and Σ2 in nonincreasing
sequence, and Q is the orthogonal matrix given in (1.9). Because the smallest singu-
lar value of [ b |A ] is simple and because the transformation (1.9) does not change the
first components of the right singular vectors of [ b |A ] (i.e., vj = diag ( 1 , Q ) v̄j ,
where vj and v̄j are columns of V and V̄ , respectively, j = 1 , . . . , n + 1), the
right singular vector corresponding to σn+1 ([ b |A ]) has nonzero first component.
The TLS solution of the original problem is given by this right singular vector and
obviously it is identical to the solution of the core problem transformed back to the
original variables, i.e. xTLS ≡ Q [ xT

1 | 0 ]T .
Case B. If

σmin (A22) = σmin ( [ b1 |A11 ] ) ,

then the smallest singular value of [ b |A ] is multiple and it is equal to σn (A). The
Golub, Van Loan condition (1.7) is no more satisfied. From (1.20) it follows that the
multiplicity of the smallest singular value of A increase by appending the right-hand
side b.

As in the previous case, because the transformation (1.9) does not change the
first components of the right singular vectors of [ b |A ], there exists a right singular
vector v̄� corresponding to σn+1 ([ b |A ]) (from the SVD of [ b1 |A11 ]) which has
nonzero first component, all other singular vectors corresponding to σn+1 ([ b |A ])
(from the SVD of A22) have zero first components. Consequently the original prob-
lem Ax ≈ b has a TLS solution but it is not unique. Obviously, the minimum
norm TLS solution of the original problem is given by the right singular vector of
v� = diag ( 1 , Q ) v̄�, i.e. it is identical to the solution of the core problem [ b1 |A11 ]
transformed back to the original variables, i.e. xTLS ≡ Q [ xT

1 | 0 ]T .
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Case C. If
σmin (A22) < σmin ( [ b1 |A11 ] ) ,

then the singular values σn (A) ≡ σn+1 ([ b |A ]) ≡ σmin (A22) have the same mul-
tiplicities. All the right singular vectors corresponding to σn+1 ([ b |A ]) have zero
first components. The original problem Ax ≈ b does not have a TLS solution.

For similar reasons as in the two previous cases, the smallest singular value
of [ b |A ] whose right singular vector has nonzero first component must be equal
to σmin ([ b1 |A11 ]). The nongeneric solution of the original problem is unique iff
σmin ([ b1 |A11 ]) is not present in the set of singular values of A22, and, vice versa,
the nongeneric solution is nonunique (i.e., σt is multiple in the notation used in
Section 1.3.3) iff there exist σj (A22) such that σj (A22) = σmin ([ b1 |A11 ]). The
(minimum 2-norm) nongeneric solution of Ax ≈ b is given by the solution of the
core problem transformed back to the original variables, i.e. xNGN ≡ Q [ xT

1 | 0 ]T .

Summarizing, for any approximation problem (1.1) the vector x ≡ Q [ xT
1 | 0 ]T ,

where x1 is the unique TLS solution of the core problem within Ax ≈ b, represents
the corresponding minimum 2-norm solution given in [31, 84]. For the given Ax ≈ b
it is reasonable, and Paige and Strakoš in [64] also recommended, first to find a
core problem A11 x1 ≈ b1 using orthogonal transformations (or by Golub-Kahan
iterative bidiagonalization), then solve the core problem A11 x1 ≈ b1, put x2 = 0,
and define the solution of the original problem define as x ≡ Q [ xT

1 | 0 ]T . The
assumption x2 = 0 here does not follow from a theory, it is a postulate: do not mix
the useful (necessary and sufficient) information with the useless data contained in
A22 in the solution of Ax ≈ b. Consequently the core problem theory is consistent
with earlier work and it explains and clarifies the concept of nongeneric solution.
The nongeneric concept becomes justified although the minimum 2-norm nongeneric
solution does not solve the TLS problem (1.3).

Clearly, from the core problem concept,

σmin (A22) ≥ σmin ( [ b1 |A11 ] ) (1.21)

is the necessary and sufficient condition for the existence of a TLS solution. (If
the matrix A22 is trivial, i.e. it has no columns, then the problem always has the
unique TLS solution.)

The following example taken from [64] generalizes observations discussed in Ex-
ample 1.1 and throughout the preceding text. It shows, for general A, b, that the
TLS solution does not exist if and only if the minimal correction [ g |E ] that makes
Ax ≈ b compatible does not exist.

Example 1.2. Consider Ax ≈ b and A11 x1 ≈ b1 a core problem within Ax ≈ b
obtained by a transformation in the form (1.9). Assume that

σmin (A22) < σmin ( [ b1 |A11 ] ),

i.e., the original problem does not have a TLS solution, and let u, v be the left and
right singular vectors such that A22 v = u σmin (A22), uT A22 = σmin (A22) vT .

For any real vector z define r1 ≡ b1 − A11 z. Then for any arbitrary small real
scalar ε > 0 [

A11 r1 ε vT

0 A22 − u σmin (A22) vT

] [
z

v ε−1

]
=
[

b1

0

]
.

The square of the Frobenius norm of the corresponding correction to A is equal to
( ‖r1‖2 ε2 + σ2

min (A22) ) −→ σ2
min (A22) with ε −→ 0.
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Thus by applying the TLS directly on the original problem we get a nonoptimal
TLS distance less than σmin ( [ b1 |A11 ] ), the TLS distance for the core problem
A11 x1 ≈ b1. The above nonoptimal solution has nothing to do with the TLS
solution vector for A11 x1 ≈ b1, because it is essentially determined by v from
the non-core part of the problem A22 x2 ≈ 0 and by the arbitrary chosen vector z .
This does not reflect any useful information contained in the data. Moreover in this
case the norm of the nonoptimal solution grows to infinity ‖[ zT | vT ε−1 ]T ‖ −→ ∞
with ε −→ 0, and the optimal solution does not even exist.

This example shows a general behavior of the nonoptimal solution, which was also
illustrated by Example 1.1 for particular A, b. The attempt to reach the minimal
correction causes the grow of the norm of the solution, and, what is more important,
the dependency of the solution on an arbitrary data.

1.4.3 Alternative core problem definition

In the previous text it was shown that a subproblem representing the core problem,
i.e. the minimal subproblem, by Definition 1.1, has several properties, namely (G1)–
(G5). (Here, Definition 1.1 is identical to the Paige and Strakoš definition used in
[64].) These properties are not independent, the properties (G1) and (G3) imply
all the others. Here we ask whether (G1), (G3) can be used for an alternative core
problem definition, i.e. whether (G1), (G3) automatically imply the minimality.
This section is motivated by the work on the core problem theory for problems with
multiple right-hand sides.

First, we show that the core reduction in the form (1.9) applied on a problem
Ax ≈ b satisfying (G1) and (G3) yields trivial A22 (having no columns as well
as no rows). Equivalently, we show that any problem having properties (G1) and
(G3) represents the core problem within itself. Then we introduce an alternative
definition.

Let Ax ≈ b be an approximation problem having properties (G1) and (G3).
Since by (G3) all the left singular vector subspaces R (U ′

j) are one dimensional, and
(U ′

j)
T b is nonzero, the transformation (1.9) immediately reduces to the form

PT
[

b AQ
]

=
[

b1 A11 0
]

,

i.e. A22 has no rows. Now, since A = P [ A11 | 0 ] QT is of full column rank, by
(G1), the transformation must reduce further to the form

PT
[

b AQ
]

=
[

b1 A11

]
,

i.e. A22 has no columns. Thus the core problem transformation described by
(1.9) applied to the problem Ax ≈ b having properties (G1) and (G3) yields the
subproblem A11 x1 ≈ b1 with the same dimensions. However, it represents the
minimally dimensioned subproblem. Consequently any problem satisfying (G1),
(G3) represents a core problem within itself.

Now, it is straightforward to use properties (G1), (G3) for an alternative defi-
nition of the core problem.

Definition 1.3 (Core problem; alternative definition). Any approximation problem
Ax ≈ b having properties (G1), (G3) is called core problem.

This alternative core problem definition does not contain the link to the original
data, in the other words, that the core problem here is not defined as a subproblem
within any other problem, as it is in the original Paige and Strakoš definition, [64],
see Definition 1.1.
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1.4.4 Lanczos tridiagonalization and core problems

Hnětynková, Plešinger and Strakoš [41, 42, 43] show alternative proofs of the funda-
mental properties of the core problem – especially the minimality of its dimensions,
based on the relationship between the Golub-Kahan bidiagonalization, the Lanczos
tridiagonalization and the properties of Jacobi matrices.

Consider the partial lower Golub-Kahan bidiagonalization of the matrix A in the
form (1.11). Recall that it can be rewritten in the matrix form AT Sj = Wj LT

j ,
AWj = Sj+1 Lj+. The Golub-Kahan bidiagonalization (1.11) of A with s1 =
b/‖b‖ results in one of the two situations (1.12), (1.13), which will be distinguished
throughout this section.

The bidiagonalization algorithm is closely connected with the Lanczos tridiag-
onalization, see [50]. Let K ∈ R

ρ×ρ be a symmetric matrix. Given the initial
vector f1 ∈ Rρ such that ‖f1‖ = 1, f0 ≡ 0, δ1 ≡ 0, the partial tridiagonalization
algorithm computes for j = 1 , 2 , . . .

yj ≡ K fj − δj fi−1 ,

γj ≡ yT
j fj ,

δj+1 fj+1 ≡ yj − γj fj ,

(1.22)

where ‖fj+1‖ = 1, δj+1 ≥ 0, until δj+1 = 0 or until j = ρ. Consider δj > 0 for
j = 1 , . . . , k. Denote Fj ≡ [ f1 , . . . , fj ] and

Hj ≡

⎡
⎢⎢⎢⎢⎣

γ1 δ2

δ2 γ2
. . .

. . .
. . . δj

δj γj

⎤
⎥⎥⎥⎥⎦ ∈ R

j×j ,

for j = 1 , . . . , k. Then Fj has orthonormal columns and Hj represents a (sym-
metric tridiagonal) Jacobi matrix with positive elements on the first sub- and super-
diagonal. The Lanczos algorithm (1.22) can be equivalently written in the matrix
form K Fj = Fj Hj + δj+1 fj+1 eT

j , FT
j fj+1 = 0. For a given real symmetric

K, the algorithm (1.22), called Lanczos process is fully determined by the starting
vector f1.

The properties of Jacobi matrices, see Theorem1.3 and Lemma 1.1, yield the
fundamental properties of the matrices Hj . The following lemma presents well
known properties of the Lanczos process.

Lemma 1.2. Let K ∈ R
ρ×ρ be a symmetric matrix, f1 ∈ R

ρ and ‖f1‖ = 1.
Assume that algorithm (1.22) does not stop before step k. Then for j = 1 , . . . , k:

(i) The matrix Hj has distinct eigenvalues.

(ii) The first (as well as the last) components of all eigenvectors of Hj are nonzero.

(iii) If K is real symmetric positive semidefinite and f1 ⊥ N (K), then all the
eigenvalues of Hj are positive (i.e. Hj is symmetric positive definite).

Proof. The properties (i) and (ii) are the basic properties of Jacobi matrices, see
Lemma 1.1, [66, Lemma 7.7.1, Theorem 7.9.3]. Further, (iii) follows recursively from
the interlacing property (1.15), using the fact that the final Jacobi matrix Hl, for
which K Fl = Fl Hl (i.e. l is the index for which δl �= 0 and δl+1 = 0) must be
under the assumption in (iii) nonsingular and thus symmetric positive definite, see
[66, Theorem 10.1.1].
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The relationship between the Lanczos tridiagonalization and the Golub-Kahan
bidiagonalization can be described in several ways, see [5, pp. 662–663], [6, pp. 513–
515], [27, pp. 212–214] and also [57, pp. 199–200], [59, pp. 44–48], [51, pp. 115–118].
Consider the coefficients of the Golub-Kahan bidiagonalization αj > 0, βj > 0 for
j = 1 , . . . , k. Then AT Sj = Wj LT

j multiplied by A from the left, together with
the substitution AWj = Sj+1 Lj+, gives,

AAT Sj = Sj Lj LT
j + αj βj+1 sj+1 eT

j , (1.23)

where Lj LT
j is the Jacobi matrix having the form (1.17), with j instead of ñ. The

identity (1.23) represents j steps of the Lanczos tridiagonalization of the matrix
AAT with starting vector s1 = b/β1 = b/‖b‖. Here, according to the notation
used in (1.22), we have K(1) ≡ AAT ∈ Rm×m, F

(1)
j ≡ Sj , H

(1)
j ≡ Lj LT

j and

δ
(1)
j ≡ αj−1 βj > 0, for j = 1 , . . . , k.

Similarly AWj = Sj+1 Lj+ multiplied by AT from the left, together with the
substitution AT Sj+1 = Wj+1 LT

j+1, gives

AT AWj = Wj LT
j+ Lj+ + αj+1 βj+1 wj+1 eT

j , (1.24)

where LT
j+ Lj+ is the Jacobi matrix having the form (1.16), with j instead of ñ.

The identity (1.24) represents j steps of the Lanczos tridiagonalization of the matrix
AT A with starting vector w1 = AT s1/α1 = AT b/‖AT b‖. Here we have K(2) ≡
AT A ∈ Rn×n, F

(2)
j ≡ Wj , H

(2)
j ≡ LT

j+ Lj+ and δ
(2)
j ≡ αj βj > 0, for j =

1 , . . . , k.

Remark 1.5. The relationship between the Golub-Kahan bidiagonalization and the
Lanczos tridiagonalization algorithms can also be described using the following re-
lation. The Lanczos tridiagonalization applied to the augmented matrix

K(3) ≡
[

0 A
AT 0

]
∈ R

(m+n)×(m+n)

with the starting vector f
(3)
1 ≡ [ sT

1 , 0 ]T yields the Jacobi matrix with zero main
diagonal and the sub- and superdiagonals equal to (α1 , β2 , α2 , β2 , α3 , . . . ). The
orthonormal vectors f

(3)
2j−1 ≡ [ sT

j , 0 ]T and f
(3)
2j ≡ [ 0 , wT

j ]T are generated in odd
and even steps of algorithm, respectively.

Now the fundamental properties of a core problem can be related to the prop-
erties of the Lanczos tridiagonalization process and the Jacobi matrices given in
Lemma 1.2. We include the proof in the same form as it is in [41, 43]. The compat-
ible and the incompatible case are distinguished.

Case 1. In the compatible case, αj > 0, βj > 0, for j = 1 , . . . , n̄, βn̄+1 = 0
or n̄ = m (i.e. m ≤ n), see (1.12). The square matrix Ã11 ≡ Ln̄ represents a
Cholesky factor of the Jacobi matrix H

(1)
n̄ ≡ Ln̄ LT

n̄ ∈ Rn̄×n̄, which results from
the Lanczos tridiagonalization of K(1) ≡ AAT with the starting vector s1 = b/‖b‖
(1.23), and which stops exactly in n̄ steps, i.e.,

(AAT )Sn̄ = Sn̄ (Ln̄ LT
n̄ ) . (1.25)

Consider the SVD of Ln̄ = R Σ T T , where Σ = diag (σ1 , . . . , σn̄ ), and R ∈
Rn̄×n̄, T ∈ Rn̄×n̄ are orthogonal matrices. Then H

(1)
n̄ = Ln̄ LT

n̄ = R Σ2 RT is the
spectral decomposition of the matrix H

(1)
n̄ , σ2

j are its eigenvalues and rj = R ej its
eigenvectors, j = 1 , . . . , n̄.
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From (i) in Lemma 1.2 the eigenvalues σ2
j are distinct and thus the singular

values of Ã11 ≡ Ln̄ are distinct. The matrix Ln̄ is square with positive elements
on its diagonal. Therefore A11 is of full column rank (G1) and all its distinct
singular values must be positive (G5). Property (G3) follows immediately from (ii)
in Lemma 1.2, since b̃T

1 rj = β1 eT
1 rj �= 0 for j = 1 , . . . , n̄.

Definition 1.1 formulates the core problem as the minimally dimensioned sub-
problem. As shown in Section 1.4.3 (G1) and (G3) ensure the minimality prop-
erty. However, the minimality can be shown directly using the properties of the
Lanczos algorithm and Jacobi matrices. Assume by contradiction that there ex-
ists P̂ , P̂−1 = P̂T , and Q̂, Q̂−1 = Q̂T , such that the transformation (1.9) gives
Â11 ∈ Rq×q with q < n̄. (Because the system is compatible by considering, for
example, the QR decomposition of Â11, we can with no loss of generality assume
that Â11 is square.) Substituting

A = P̂

[
Â11 0
0 Â22

]
Q̂T

into the Lanczos tridiagonalization (1.25) gives

P̂

[
Â11 0
0 Â22

] [
Â11 0
0 Â22

]T

P̂T Sn̄ = Sn̄ H
(1)
n̄ ,

i.e. [
Â11 ÂT

11 0
0 Â22 ÂT

22

]
(P̂T Sn̄) = (P̂T Sn̄)H

(1)
n̄ , (1.26)

with P̂T s1 = P̂T b/‖b‖ = [ b̃T
1 | 0 ]T /‖b‖. Since Â11 ÂT

11 ∈ Rq×q and b̂1 ∈ Rq, the
Lanczos tridiagonalization represented by (1.26) must stop in at most q steps, and
H

(1)
n̄ must have δ

(1)
q+1 = 0, which contradicts the fact that H

(1)
n̄ is a Jacobi matrix.

Case 2. In the incompatible case, αj > 0, βj > 0, for j = 1 , . . . , n̄, and
βn̄+1 > 0, αn̄+1 = 0 or n̄ = n (i.e. m ≥ n + 1), see (1.13). The rectangular
matrix Ã11 ≡ Ln̄+ can be linked to the matrix H

(2)
n̄ ≡ LT

n̄+ Ln̄+ ∈ Rn̄×n̄ (note
that here Ã11 does not represent the Cholesky factor). The matrix H

(2)
n̄ results

from the Lanczos tridiagonalization of K(2) ≡ AT A with the starting vector w1 =
AT b/‖AT b‖ (see (1.24)), and which stops exactly in n̄ steps, i.e.,

(AT A)Wn̄ = Wn̄ (LT
n̄+ Ln̄+) . (1.27)

Consider the SVD of Ln̄+ = R Σ T T , where Σ = diag (σ1 , . . . , σn̄ ), R ∈ R(n̄+1)×n̄

is now a rectangular matrix with an orthonormal columns, T ∈ Rn̄×n̄ is orthogonal
matrix. Then H

(2)
n̄ = LT

n̄+ Ln̄+ = T Σ2 T T is the spectral decomposition of the
matrix H

(2)
n̄ , σ2

j are its eigenvalues and tj = T ej its eigenvectors, j = 1 , . . . , n̄.
Similarly to the previous case, from (i) in Lemma 1.2 it follows that the singular

values of Ln̄+ are distinct. Since by construction v1 does not have any nonzero
component in the null space of AT A, the property (iii) in Lemma 1.2 yields that
all these distinct singular values of Ln̄+ are positive and therefore we obtain prop-
erties (G1) and (G5). Moreover, eT

1 tj �= 0, j = 1 , . . . , n̄, by the property (ii)
in Lemma 1.2. Considering Ln̄+ T = R Σ and the fact that Ln̄+ is lower bidiag-
onal with nonzero bidiagonal elements, it follows that eT

1 rj �= 0, j = 1 , . . . , n̄.
Consequently b̃T

1 rj = β1 eT
1 rj �= 0, j = 1 , . . . , n̄, which gives the property (G3).

As mentioned, the minimality property used in Definition 1.1 is implied by (G1)
and (G3), see also Section 1.4.3. However, it can be shown directly using the
properties of Lanczos process and Jacobi matrices by contradiction, analogously
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to the compatible case. Assume by contradiction that there exist P̂ , P̂−1 = P̂T ,
and Q̂, Q̂−1 = Q̂T , such that the transformation (1.9) gives Â11 ∈ R(q+1)×q with
q < n̄. (Here the system is incompatible and therefore we can with no loss of
generality assume that Â11 is rectangular of the given dimensions.) Substituting
A = P̂ diag ( Â11 , Â22 ) Q̂T into the Lanczos tridiagonalization (1.27) gives[

ÂT
11Â11 0
0 ÂT

22Â22

]
(Q̂T Wn̄) = (Q̂T Wn̄)H

(2)
n̄ , (1.28)

with Q̂T w1 = Q̂T (AT b )/‖AT b‖ = [ ( ÂT
11 b̂1 )T | 0 ]T /‖AT b‖, which leads to a

contradiction exactly in the same way as in Case 1.

Summarizing, it was shown that the fundamental properties of the core problem
can be proved in an elegant way without using the SVD of the whole matrix [ b |A ].
Here the Golub-Kahan bidiagonalization and the Lanczos tridiagonalization are
used as very strong mathematical tools for constructing proofs.



26 CHAPTER 1. INTRODUCTION

1.5 Goals of the thesis

The thesis focuses on solution of an orthogonally invariant linear approximation
problem with multiple right-hand sides AX ≈ B through the TLS concept. The
main goal of the thesis is to generalize the analysis of the TLS concept given for
problems with single right-hand sides in [31, 84, 64] and to build up a consistent
theory which would cover the multiple right-hand sides case.

For a problem with multiple right-hand sides, a partial generalization of the
TLS concept was presented by S. Van Huffel and J. Vandewalle in [84]. They cover
some particular cases for which they define a TLS solution. They also present an
algorithm which for any data gives an output, which is, however, not identified
with a theoretically justified TLS theory. Therefore we attempt in Chapter 3, as
the first goal of the presented thesis, to revise and complete, within our abilities,
their analysis.

C. C. Paige and Z. Strakoš proved in [64] that for a problem with a single right-
hand side Ax ≈ b there is a reduction which determines a core problem A11 x1 ≈
b1 within the original problem, with all necessary and sufficient information for
solving the original problem. The core problem always has the unique TLS solution,
and, using the transformation to the original variables, it gives the solution of the
original approximation problem identical to the minimum 2-norm solutions of all
TLS formulations given in [31, 84]. The core problem theory represents a new
approach to understanding of the TLS concept. It makes the theory complete and
transparent, and it also fundamentally changes a view to practical computations.
The second goal of the presented thesis is therefore to extend the core problem
theory, if possible, to problems with multiple right-hand sides. The reduction based
on the SVD of A, motivated by the work of D. M. Sima and S. Van Huffel [73, 74],
is given in Chapter 4. Another approach, based on a banded generalization of the
Golub-Kahan bidiagonalization algorithm, is given in Chapter 5, motivated by the
series of lectures [8, 9, 10] by Å. Björck, and also the work [64, 41, 42, 43] of C. C.
Paige, Z. Strakoš, I. Hnětynková and partially of the author of this thesis.

Chapter 6 investigates the relationship between the SVD-based and the banded
reduction approaches. An extension of the minimally dimensioned subproblem con-
cept to the multiple right-hand side case has some difficulties. In particular, the
minimally dimensioned reduced subproblem may not have a TLS solution.

Core problem computation in finite precision arithmetic must resolve a problem
of relevant stopping criteria. Difficulties connected with revealing of core problem
are illustrated on examples in Chapter 7. We do not address this question fully in
the thesis, but present an example of the noise-revealing property of the Golub-
Kahan bidiagonalization, which can be very useful in hybrid methods for solving
ill-posed problems, see Chapter 8.

The thesis ends with conclusions, some open questions and directions for further
research, in Chapter 9.
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Chapter 2

Problem formulation

This chapter introduces the total least squares formulation for the problems with
the multiple right-hand sides, the basic notation used in the thesis, and, finally, the
selected useful theorems repeatedly used throughout the text.

2.1 Introduction

Consider an orthogonally invariant linear approximation problem

AX ≈ B , A ∈ R
m×n , X ∈ R

n×d , B ∈ R
m×d , (2.1)

or, equivalently, [
B A

] [ − Id

X

]
≈ 0 . (2.2)

We assume AT B �= 0, otherwise the columns of the right-hand side (observation
matrix) B are not correlated with the columns of the system matrix A and it does
not make sense to look for an approximation of B by the columns of A.

Definition 2.1 (Total least squares problem). The linear approximation problem
(2.1) specified by

min
X,E,G

∥∥ [ G E
] ∥∥

F
subject to (A + E)X = B + G (2.3)

is called the total least squares (TLS) problem with the TLS solution XTLS ≡ X
and the correction matrix [ G |E ], G ∈ Rm×d, E ∈ Rm×n.

The TLS problem has been investigated for decades, see [29], [24, Section 6], [81, 31],
[26, pp. 324–326], [84]. Even with d = 1 it may not have a solution, and when the
solution exists, it may not be unique, see [84] for the classical description and [64]
for the recent refinements. In our text we investigate existence and uniqueness of
the TLS solution for the formulation (2.1)–(2.3) with d ≥ 1.

Remark 2.1. A more general form of (2.3) including weighting and scaling was
considered in the literature, see, e.g., the first fully analytic paper on the subject [31].
It is worth to note that other norms than the Frobenius norm are also relevant in
practice, see, e.g., [87]. In our text we restrict ourselves to the problem (2.1)–(2.3).

Remark 2.2. Equivalent approximation problems have been used in many applica-
tions. For a survey and relationship between the algebraic formulation and analysis
and descriptions used in application areas we refer to [84, Chapters 1, 8 and 9].

29
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2.2 Basic notation and selected theorems

In order to simplify the notation we assume m ≥ n+d (add zero rows if necessary).
Consider a singular value decomposition (SVD) of A, r ≡ rank (A),

A = U ′ Σ′ (V ′)T , (2.4)

where (U ′)−1 = (U ′)T , (V ′)−1 = (V ′)T , Σ′ = diag (σ′
1 , . . . , σ′

r , 0), and

σ′
1 ≥ . . . ≥ σ′

r > σ′
r+1 = . . . = σ′

n ≡ 0 . (2.5)

Similarly, consider a SVD of [B |A ], s ≡ rank ( [ B |A ] ),[
B A

]
= U Σ V T , (2.6)

where U−1 = UT , V −1 = V T , Σ = diag (σ1 , . . . , σs , 0), and

σ1 ≥ . . . ≥ σs > σs+1 = . . . = σn+d ≡ 0 . (2.7)

In the further text σj (M) denotes the jth largest singular value, R (M) and N (M)
the range and the null space, ‖M‖F and ‖M‖ the Frobenius norm and the 2-norm
of the given matrix M , ‖v‖ the 2-norm of the given vector v; sp (K) denotes the
spectrum and λj (K) the jth largest eigenvalue of the given symmetric positive
semidefinite matrix K; Ik ∈ Rk×k denotes the k by k identity matrix.

We will repeatedly use the following theorem. The statement follows from the
classical form of the interlacing theorem, see [79], [66, p. 203 (in the original Prentice-
Hall edition 1980, p. 186)], [90, Chapter 2, §47, pp. 103–4], [32, Theorem8.1.7, p. 396,
and Corollary 8.6.3, p. 449], [84, Theorem2.4, p. 32].

Theorem 2.1 (Interlacing theorem for singular values). Consider A ∈ Rm×n,
B ∈ Rm×d, m ≥ n + d. Let (2.4) be the SVD of A and (2.6) the SVD of [ B |A ].
Then

σj ≥ σ′
j ≥ σj+d , j = 1 , . . . , n . (2.8)

For the proof see [66, p. 203]. Please note that the proof in the original edition from
1980, p. 186, is different. We include it here for its relevance to techniques used
throughout the thesis.

Proof. Consider the symmetric matrices

M ≡ [ B A
]T [

B A
] ∈ R

(n+d)×(n+d) , H ≡ AT A ∈ R
n×n ,

then sp (H) = { σ′2
j : j = 1 , . . . , n } represents the spectrum of the matrix H

and sp (M) = { σ2
j : j = 1 , . . . , n + d } represents the spectrum of the matrix

M , ordered according to (2.5) and (2.7), respectively. For ξ ∈ R, ξ �∈ sp (H) define
the matrices

K(ξ) ≡ (H − In ξ )−1 AT B ∈ R
n×d ,

W (ξ) ≡ (BT B − Id ξ ) − BT A (H − In ξ )−1 AT B ∈ R
d×d .

Then

(M − In+d ξ ) =
[

Id K(ξ)T

0 In

] [
W (ξ) 0

0 H − In ξ

] [
Id 0

K(ξ) In

]
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is a congruence transformation. Consequently the matrices ( M − In+d ξ ) and
diag (W (ξ) , H − In ξ ) have the same inertia (π , ν , ζ ), i.e., they have the same
number of positive π (·), negative ν (·) and zero ζ (·) eigenvalues, see, e.g., [44,
Theorem4.5.8, p. 223]. Obviously

π (H − In ξ ) ≤ π (M − In+d ξ )
= π (H − In ξ ) + π (W (ξ)) ≤ π (H − In ξ ) + d ,

(2.9)

ν (H − In ξ ) ≤ ν (M − In+d ξ )
= ν (H − In ξ ) + ν (W (ξ)) ≤ ν (H − In ξ ) + d .

(2.10)

Assume by contradiction that there exists an index j such that σj < σ′
j . Choose

ξ1 �∈ sp (H) such that σ2
j < ξ1 < σ′2

j . Then π (H − In ξ1 ) ≥ j, and π (M −
In+d ξ1 ) < j, which contradicts (2.9),

j ≤ π (H − In ξ1 ) ≤ π (M − In+d ξ1 ) < j ,

and thus σj ≥ σ′
j .

Similarly, assume by contradiction that there exists an index j such that σ′
j <

σj+d. Choose ξ2 �∈ sp (H) such that σ′2
j < ξ2 < σ2

j+d. Then ν (H − In ξ2 ) ≥
n − j + 1, and ν (M − In+d ξ2 ) < (n + d) − (j + d) + 1, which contradicts (2.10),

n − j + 1 ≤ ν (H − In ξ2 ) ≤ ν (M − In+d ξ2 ) < n − j + 1 ,

and thus σ′
j ≥ σj+d.

Corollary 2.1. Let σ′
j be a singular value of A with multiplicity r′j . Then the

extended matrix [ B |A ] has a singular value σi, σi ≡ σ′
j, with multiplicity ri,

where
max { 0 , r′j − d } ≤ ri ≤ r′j + d . (2.11)

Proof. Consider σ′
j with the multiplicity r′j > d. The lower bound follows from

σ′
j ≥ σj+d ≥ . . . ≥ σj+d+(r′

j−d−1) ≡ σj+r′
j−1 ≥ σ′

j+r′
j−1 = σ′

j .

If r′j ≤ d, the argument is analogous.
On the other hand, if σ′

1 = . . . = σ′
n, then the upper bound is trivial. If

σ′
1 = . . . = σ′

r′
j

> σr′
j+1 (with r′j < n), then σ′

r′
j+1 ≥ σr′

j+1+d gives the result.
Analogously, if σ′

j−1 > σ′
j = . . . = σ′

n (with j > 1), then σj−1 ≥ σ′
j−1 gives the

result. In all other cases

σj−1 ≥ σ′
j−1 > σ′

j = . . . = σ′
j+r′

j−1 > σ′
j+r′

j
≥ σj+r′

j+d ,

which gives the maximal possible multiplicity.

Remark 2.3. For d = 1, (2.8) reduces to

σ1 ≥ σ′
1 ≥ σ2 ≥ σ′

2 ≥ . . . ≥ σ′
n ≥ σn+1 ≥ 0 . (2.12)
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As a consequence of this remark, appending one vector (column of B) to A causes
interlacing of the singular values. Subsequently, the multiplicity of each singular
value of A can increase by one, stagnate, or decrease by one. The assertion of
Corollary2.1 can then be obtained by induction.

Another theorem frequently used throughout the text describes a low-rank ma-
trix approximations [84, Theorem2.3, p. 31].

Theorem 2.2 (Eckart-Young-Mirsky matrix approximation theorem). Consider
C ∈ Rm×n with rank (C) = r, m ≥ n. Let C =

∑r
j=1 uj σj vT

j be the SVD of C,
and σ1 ≥ . . . ≥ σr > σr+1 = . . . = σn ≡ 0 the singular values of C. Then for
any k ≤ r the matrix Ck ≡ ∑k

j=1 uj σj vT
j represents the rank k approximation to

C with the following minimization property

min
rank(D)≤k

‖C − D ‖ = ‖C − Ck ‖ = σk+1 , (2.13)

and

min
rank(D)≤k

‖C − D ‖F = ‖C − Ck ‖F =

⎛
⎝ n∑

j=k+1

σ2
j

⎞
⎠1/2

. (2.14)

For the proof see [16, 55], for the 2-norm see also [32, Theorem2.5.3, pp. 72–73].
Two alternative proofs for the Frobenius norm are in [4, Theorem3, pp. 213–214,
and Exercise 29, p. 216].

The history of Theorem2.2 is described in [76, p. 210]. The Eckart-Young-Mirsky
(or, alternatively, Schmidt-Mirsky) theorem is commonly attributed to Eckart and
Young [16] (1936), who established it for the Frobenius norm. But Schmidt [71]
(1907) proved it for integral operators and the Hilbert-Schmidt norm, the natural
extension of the Frobenius norm. Mirsky [55] (1964) generalized it to unitarily
invariant norms. For another generalization by Golub, Hoffman, and Stewart see
[26] (1987), or [76, Theorem4.18, p. 208].

It is worth to note some properties of the Moore-Penrose pseudoinverse which
is used throughout the thesis.

Lemma 2.1. Let K, L, M be arbitrary matrices, Z be an orthogonal matrix such
that M and Z can be multiplied. Then

( diag (K , L ) )† = diag (K† , L† ) , (2.15)
(M Z )† = Z† M † = Z−1 M † = ZT M † , (2.16)[

M 0
]† =

[
M †

0

]
, (2.17)

where the zero blocks in the third equality have transposed dimensions.

The proof is based on the SVD form of the Moore-Penrose pseudoinverse, or by
using the Moore-Penrose conditions, see, e.g., [32, p. 257].



Chapter 3

Classification and the
relationship to the work of
Van Huffel and Vandewalle

This chapter recapitulates the classical analysis and results given by S. Van Huffel
and J. Vandewalle in [84, Chapter 3] for the problems with multiple right-hand sides.
Some extensions of the analysis and the completion of the classification of the total
least squares problems are presented here.

The goal of this chapter is to formulate conditions for existence of a TLS solution
for problems with multiple right-hand sides.

3.1 Introduction

In this chapter we concentrate on the incompatible problem (2.1), R(B) �⊂ R(A).
The compatible case is simpler because it reduces to finding a solution of a system
of linear algebraic equations. With no loss of generality it is assumed m ≥ n + d
(add zero rows if necessary; note that this assumption and the addition of zero rows
is justified through the data reduction concept, see Chapter 4).

In order to handle a possible multiplicity of σn+1, we introduce the following
notation

σn−q > σn−q+1 = . . . = σn︸ ︷︷ ︸
q

= σn+1 = . . . = σn+e︸ ︷︷ ︸
e

> σn+e+1 , (3.1)

where q singular values to the left and e − 1 singular values to the right are equal
to σn+1, and q ≥ 0, e ≥ 1. For convenience we denote n − q ≡ p. If q = n, then
σp is nonexistent. Similarly, if e = d, then σn+e+1 is nonexistent.

It will be useful to consider the following partitioning

Σ =
[

Σ(Δ)
1 Σ(Δ)

2

]
, (3.2)

where Σ(Δ)
1 ∈ R

m×(n−Δ), Σ(Δ)
2 ∈ R

m×(d+Δ), and consistently with (3.2),

V =

[
V

(Δ)
11 V

(Δ)
12

V
(Δ)
21 V

(Δ)
22

]
, (3.3)

where V
(Δ)
11 ∈ Rd×(n−Δ), V

(Δ)
12 ∈ Rd×(d+Δ), V

(Δ)
21 ∈ Rn×(n−Δ), V

(Δ)
22 ∈ Rn×(d+Δ),

see Figure 3.1.

33
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Σ = Σ(Δ)
1 Σ(Δ)

2

n − Δ︷ ︸︸ ︷ d + Δ︷ ︸︸ ︷⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

m V =

V
(Δ)
11 V

(Δ)
12

V
(Δ)
21 V

(Δ)
22

n − Δ︷ ︸︸ ︷ d + Δ︷ ︸︸ ︷⎫⎪⎬
⎪⎭ d

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n

Figure 3.1: Dimensions of the individual matrix blocks in the
partitioning (3.2), (3.3).

Depending on the data and convenience, the value of Δ, as described later, can be
positive, zero, or negative. When Δ = 0, the partitioning conforms in a straight
way to the fact that [ B |A ] is created by A appended by the matrix B with d

columns. Then the upper index is omitted, Σ1 ≡ Σ(0)
1 , etc.

The next Lemma follows from the general version of the CS decomposition of
orthonormal matrices.

Lemma 3.1. Let V ∈ R(n+d)×(n+d) be an orthogonal matrix with the partitioning
given by (3.3). Then the following two assertions are equivalent:

(i) V
(Δ)
12 is of full row (column) rank,

(ii) V
(Δ)
21 is of full column (row) rank,

respectively. Similarly for the matrices V
(Δ)
11 and V

(Δ)
22 .

Proof. The CS decomposition [58, p. 402], see also [32, Theorem2.6.3, p. 78], gives

diag (W1 , W2 )T

[
V

(Δ)
11 V

(Δ)
12

V
(Δ)
21 V

(Δ)
22

]
diag (T1 , T2 )

=

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
0 C 0 0 S 0
0 0 0 0 0 I
0 0 0 I 0 0
0 −S 0 0 C 0
0 0 I 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(3.4)

where W1 ∈ Rd×d, W2 ∈ Rn×n, T1 ∈ R(n−Δ)×(n−Δ), T2 ∈ R(d+Δ)×(d+Δ) are
orthogonal matrices, I stands for the identity matrices with appropriate dimensions,
C and S are square diagonal matrices with positive entries on the main diagonals.
We do not need to specify the dimensions of the individual blocks; some of the zero
blocks may be empty.

Clearly, the matrix V
(Δ)
12 is of full row rank iff the first block row in (3.4) vanishes,

i.e. the first block column in (3.4) is nonexistent and the matrix V
(Δ)
21 is of full

column rank. The rest of proof is fully analogous.
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The classical analysis of the total least square problem with a single right-hand
side (d = 1) in [31, Theorem4.1], and the whole theory developed in [84] were
based on the relationship between the singular values of A and [ B |A ]. For d = 1,
in particular, σ′

n > σn+1 represents a sufficient (not necessary) condition for the
existence of the TLS solution. This view has changed radically by the works [61]
and [64], which eliminate the difficulties caused by the fact that σ′

n > σn+1 is not
a necessary condition by reduction of the data into the form of the so called core
problem. In this chapter we stay with the classical theory based on a generalization
of [31, Theorem4.1] for d > 1. Here the following theorem is instrumental.

Theorem 3.1. Let (2.4) be the SVD of A and (2.6) the SVD of [ B |A ] with the
partitioning given by (3.2)–(3.3), m ≥ n + d, Δ ≥ 0. If

σ′
n−Δ > σn−Δ+1 , (3.5)

then σn−Δ > σn−Δ+1. Moreover, V
(Δ)
12 is of full row rank equal to d, and V

(Δ)
21 is

of full column rank equal to n − Δ.

The first part follows immediately from Theorem2.1. For the proof of the second
part see [88, Lemma 2.1] or [84, Lemma 3.1, pp. 64–65]. Please note the different
ordering of the partitioning of V in [88, 84].

Please note that here we do not specify the relationship between σn−Δ+1 and
σn+1, i.e. the partitioning (3.2)–(3.3) can be independent on (3.1).

3.2 Problems of the 1st class

Since the classification of situations which can occur when d > 1 is complicated,
we can not follow the basic, generic and nongeneric terminology used in [84].

Definition 3.1 (Problem of the 1st class). Consider a TLS problem (2.3), m ≥
n + d. Let (2.6) be the SVD of [ B |A ] with the partitioning given by (3.2)–(3.3),
Δ ≡ q, where q is the integer related to the multiplicity of σn+1, given by (3.1).
Let V

(q)
12 be of rank d. Then we call (2.3) a TLS problem of the 1st class.

For d = 1 the TLS problem of the first class reduces to the case when the right
singular vector subspace corresponding to the smallest singular value contains a
singular vector with a nonzero first component. Consequently, the TLS problem
has a (possibly nonunique) solution. As we will see, for d > 1 such a property is
not preserved.

3.2.1 Problems of the 1st class with unique TLS solution

Consider a TLS problem of the 1st class. Let in (3.1) σn > σn+1, i.e. q = 0
(p = n). We set Δ ≡ q = 0 in (3.2)–(3.3). Then V

(q)
12 ≡ V12 is a square (and

nonsingular) matrix. Define the correction matrix[
G E

] ≡ −U
[

0 Σ2

]
V T = −U Σ2

[
V T

12 V T
22

]
. (3.6)

Clearly, ‖ [ G |E ] ‖F = (
∑n+d

j=n+1 σ2
j )1/2, and the corrected matrix [ B + G |A +

E ] represents, by Theorem2.2, the unique rank n approximation of [B |A ] with
minimal [ G |E ] in the Frobenius norm.
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The columns of the matrix [ V T
12 |V T

22 ]T represent a basis for the null space of
the corrected matrix [ B + G |A + E ] ≡ U Σ1 [ V T

11 |V T
21 ]. Since V12 is square and

nonsingular, [
B + G A + E

] [ − Id

−V22 V −1
12

]
= 0 ,

which gives the uniquely determined TLS solution

XTLS ≡ X(0) ≡ −V22 V −1
12 . (3.7)

For the Frobenius norm and the 2-norm of the solution (3.7) see (3.28) in Lemma 3.2,
see also [84, Theorem3.6, pp. 55–56]. We summarize the result as a theorem, see
[84, Theorem3.1, pp. 52–53].

Theorem 3.2. Consider a TLS problem of the 1st class. If

σn > σn+1 , (3.8)

then with the partitioning of the SVD of [ B |A ] given by (3.2)–(3.3), Δ ≡ q = 0,
V12 ∈ Rd×d is square and nonsingular, and (3.7) represents the unique TLS solution
of the problem (2.3) with the corresponding correction matrix [ G |E ] given by (3.6).

Theorem3.1 with Δ = 0 then has the following corollary.

Corollary 3.1. Let (2.4) be the SVD of A and (2.6) the SVD of [ B |A ] with the
partitioning given by (3.2)–(3.3), m ≥ n + d, Δ ≡ 0. If

σ′
n > σn+1 , (3.9)

then (2.3) is a problem of the first class, σn > σn+1 and (3.7) represents the unique
TLS solution of the problem (2.3) with the corresponding correction matrix [ G |E ]
given by (3.6).

We see that (3.9) represents a sufficient condition for the existence of the TLS
solution of the problem (2.3). If (3.9) is satisfied, then the TLS solution is unique.
The condition (3.9) is, however, intricate. It may look as the key to the analysis
of the TLS problem, in particular when one considers the following corollary of
Theorems 2.1 and 3.1, see [84, Corollary 3.4, p. 65].

Corollary 3.2. Let (2.4) be the SVD of A and (2.6) the SVD of [ B |A ] with the
partitioning given by (3.2)–(3.3), m ≥ n + d, Δ ≡ q ≥ 0. Then the following
conditions are equivalent:

(i) σ′
n−q > σn−q+1 = . . . = σn+d ,

(ii) σn−q > σn−q+1 = . . . = σn+d and V
(q)
12 is of rank d .

Clearly, the condition (i) implies that the TLS problem is of the 1st class. If d = 1
and q = 0, then it reduces to (3.9) and the statement of Corollary 3.2 says that
σ′

n > σn+1 if and only if σn > σn+1 and eT
1 vn+1 �= 0.

In order to show the difficulty and motivate the further classification we now
consider all remaining possibilities for the case d = 1. It should be understood that
they go beyond the problems of the 1st class and the unique TLS solution.
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If
σ′

n = σn+1 ,

then it may happen either

σn > σn+1 and eT
1 vn+1 = 0 ,

which means that the TLS problem is not of the 1st class and it does not have a
solution, or

σn = σn+1 .

Depending on the relationship between σ′
n−q and σn−q+1 = . . . = σn+1 for some

q > 0, see Corollary 3.2, the TLS problem may have in the last case a nonunique
solution, if the TLS problem is of the 1st class (see the next section), or the solution
may not exist. We see that an attempt to base the analysis on the relationship
between σ′

n and σn+1 becomes very involved.
The situation becomes transparent with the use of the core problem concept

from [64]. For any linear approximation problem Ax ≈ b (we still consider d = 1)
there are orthogonal matrices P , Q such that

PT
[

b A
] [ 1 0

0 Q

]
=
[

b1 A11 0
0 0 A22

]
, (3.10)

where:

(i) A11 is of minimal dimensions and A22 is of maximal dimensions (it may also
be nonexistent);

(ii) all singular values of A11 are simple and nonzero;

(iii) first components of all right singular vectors of [ b1 |A11 ] are nonzero;

(iv) σmin (A11) > σmin ([ b1 |A11 ]),

see [64, Section 3] (and also Section 1.4). The minimally dimensioned subproblem
A11 x1 ≈ b1 is then called a core problem within Ax ≈ b. Please notice that
the SVD of the block structured matrix on the right hand side can easily be got
as a direct sum of the SVD decompositions of the blocks [ b1 |A11 ] and A22, just
by extending the singular vectors corresponding to the first block by zeros on the
bottom and the singular vectors corresponding to the second block by zeros on the
top. Consequently, considering the special structure of the orthogonal transforma-
tion diag ( 1 , Q ) in (3.10), which does not change the first components of the right
singular vectors, all right singular vectors of [ b |A ] with nonzero first components
correspond to the block [ b1 |A11 ], and all right singular vectors of [ b |A ] with the
zero first components correspond to A22. Now we are ready to finish the argument
by reviewing all possible situations, see also Table 3.1.

1. Let σmin (A) ≡ σ′
n > σn+1 ≡ σmin ([ b |A ]). This happens if and only if

σmin (A22) > σmin ([ b1 |A11 ]) = σmin ([ b |A ]), which is equivalent to the
existence of the unique TLS solution.

2. Let σmin (A) = σmin ([ b |A ]). Now we have to distinguish two cases.

2a. Let σmin (A) = σmin ([ b |A ]) be at the same time also the minimal
singular value σmin ([ b1 |A11 ]) which guarantees the existence of the
(minimum norm) TLS solution. Since σmin (A11) > σmin ([ b1 |A11 ])
= σmin (A), all singular values of A equal to σmin (A) must be the singular
values of the block A22. Consequently, the multiplicity of σmin ([ b |A ])
is larger by one than the multiplicity of σmin (A).
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2b. Let σmin (A) = σmin ([ b |A ]) and let σmin ([ b1 |A11 ]) > σmin (A) ≡
σmin (A22). Then the multiplicities of σmin (A) and σmin ([ b |A ]) are
equal, all right singular vectors of [ b |A ] corresponding to σmin ([ b |A ]
have the first components zero and the TLS solution does not exist.

Summarizing the argument, the TLS solution exists if and only if σmin (A) >
σmin ([ b |A ]) or σmin (A) = σmin ([ b |A ]) with the multiplicities of σmin (A) and
σmin ([ b |A ]) not equal. If the TLS solution exists, then the minimum norm TLS
solution can always be computed, and it is automatically given by the core problem
formulation.

If the TLS solution does not exist, then the core problem formulation gives the
solution equivalent to the minimum norm nongeneric solution constructed in [84].

σmin (A22) > σmin ([ b1 |A11 ]) ⇐⇒ σmin ([ b |A ]) is simple, the corre-
sponding right singular vector has
nonzero first component;

⇐⇒ TLS solution exists, it is unique;

σmin (A22) = σmin ([ b1 |A11 ]) ⇐⇒ σmin ([ b |A ]) is multiple, there ex-
ists a corresponding right singular
vector with nonzero first compo-
nent;

⇐⇒ TLS solution exists, it is nonunique;

σmin (A22) < σmin ([ b1 |A11 ]) ⇐⇒ all the right singular vectors corre-
sponding to σmin ([ b |A ]) have zero
first components;

⇐⇒ TLS solution does not exist;

Table 3.1: Necessary and sufficient conditions for (non)existence
of a TLS solution in the single right-hand side case, d = 1, see [64].

3.2.2 Problems of the 1st class with nonunique TLS solutions
– a special case

Consider a TLS problem of the 1st class. Let in (3.1) e ≡ d, i.e. let all the singular
values starting from σn−q+1 ≡ σp+1 be equal,

σ1 ≥ . . . ≥ σp > σp+1 = . . . = σn+1 = . . . = σn+d ≥ 0 . (3.11)

The case q = 0 (p = n) reduces to the problem with unique TLS solution discussed
in Section 3.2.1. If q = n (p = 0), i.e. σ1 = . . . = σn+d, then the columns
of [ B |A ] are mutually orthogonal, [B |A ]T [ B |A ] = σ2

1 In+d. Then it seems
meaningless to approximate B by the columns of A, and we will get consistently
with [84] the trivial solution XTLS ≡ 0. Therefore in the further text the nontrivial
case is represented by n > q > 0 (0 < p < n).

As shown below, the correction matrix minimal in the Frobenius norm can
be in this special case constructed from any d vectors (obtained as unitary linear
combination of the last q + d columns vp+1 , . . . , vn+d of the matrix V ) such that
their top d-subvectors create a d by d square nonsingular matrix. The equality of
the last q + d singular values ensures that the Frobenius norm of the correction
matrix is equal to σn+1

√
d . Consequently, the TLS problem has infinitely many

solutions. We concentrate on the construction of the solution minimal in norm.
Since V

(q)
12 ∈ Rd×(q+d) is of full row rank, there exists an orthogonal matrix
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Q ∈ R(q+d)×(q+d) such that[
V

(q)
12

V
(q)
22

]
Q ≡ [ vp+1 , . . . , vn+d

]
Q =

[
0 Γ
Y Z

]
, (3.12)

where Γ ∈ Rd×d is square and nonsingular. If σp+1 = . . . = σn+d = 0, then

[
B A

] [ Γ
Z

]
= 0 ,

[
B A

] [ − Id

−Z Γ−1

]
= 0 ,

and XTLS = −Z Γ−1 is the minimum norm solution of the compatible problem
AX = B. In the rest of the section we will consider σp+1 = . . . = σn+d > 0.

Consider the partitioning Q = [ Q1 |Q2 ], where Q2 ∈ R(q+d)×d has d columns.
Then the columns of Q2 form an orthonormal basis of the subspace spanned by
the columns of V

(q)T
12 , and Q1 ∈ R

(q+d)×q is an orthonormal basis of its orthogonal
complement, and [

Γ
Z

]
=

[
V

(q)
12

V
(q)
22

]
Q2 , V

(q)
12 = Γ QT

2 . (3.13)

Such orthogonal matrix Q can be obtained, e.g., using the LQ decomposition

V
(q)
12 =

[
L 0

]
Q̃T

=
[

L 0
] [ 0 Id

Iq 0

] [
0 Id

Iq 0

]T

Q̃T

≡ [ 0 Γ
]

QT ,

(3.14)

here Γ ≡ L ∈ Rd×d is lower triangular. Alternatively, decomposition (3.12) can be
constructed by application of d Householder transformation matrices on the matrix
V

(q)
12 from the right, such that

V
(q)
12 H1 =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · 0 0 ν1

♥ · · · ♥ ♥ · · · ♥ ♥ ♥
♥ · · · ♥ ♥ · · · ♥ ♥ ♥
...

. . .
...

...
. . .

...
...

...
♥ · · · ♥ ♥ · · · ♥ ♥ ♥

⎤
⎥⎥⎥⎥⎥⎦ ,

where ν1 is the norm of the first row of V
(q)
12 , and ♥ denotes, in general, a nonzero

component of a matrix. Further

V
(q)
12 H1 H2 =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · 0 0 ν1

0 · · · 0 0 · · · 0 ν2 ♥
♥ · · · ♥ ♥ · · · ♥ ♥ ♥
...

. . .
...

...
. . .

...
...

...
♥ · · · ♥ ♥ · · · ♥ ♥ ♥

⎤
⎥⎥⎥⎥⎥⎦ ,

where ν2 is the norm of the left (q + d − 1)-subrow of the second row of V
(q)
12 H1.

Finally, after d steps, we obtain

V
(q)
12 H1 . . . Hd︸ ︷︷ ︸

≡Q

=

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · 0 0 ν1

0 · · · 0 0 · · · 0 ν2 ♥
0 · · · 0 0 ν3 ♥ ♥
...

. . .
... . .

. ...
...

...
0 · · · 0 νd · · · ♥ ♥ ♥

⎤
⎥⎥⎥⎥⎥⎦ ≡ [ 0 Γ

]
, (3.15)
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where νd is the norm of the left (q + 1)-subrow of the last row of V
(q)
12 H1 . . . Hd−1.

The matrix Γ ∈ Rd×d obtained form (3.15) is lower skew triangular (with zeros
above the main skew diagonal, i.e., eT

i Γ ej = 0 if i + j ≤ d). Obviously, the
matrices Q obtained from (3.14) and (3.15) are different.

Define the correction matrix

[
G E

] ≡ − [ B A
] [ Γ

Z

] [
Γ
Z

]T

= − U Σ V T

[
V

(q)
12

V
(q)
22

]
Q2 QT

2

[
V

(q)
12

V
(q)
22

]T

= − σn+1

[
up+1 , . . . , un+d

]
Q2 QT

2

[
vp+1 , . . . , vn+d

]T
,

(3.16)

where uj and vj are the corresponding left and right singular vectors of the ma-
trix [ B |A ], respectively. Please note that with the choice of any other matrix
Q′ = [ Q′

1 |Q′
2 ] giving a decomposition of the form (3.12), Q′

2 represents an or-
thonormal basis of the subspace spanned by the columns of V

(q)T
12 , and therefore

Q2 = Q′
2 Ψ2 for some orthogonal matrix Ψ2. Consequently, (3.16) is uniquely

determined independently on the choice of Q in (3.12). Clearly, ‖ [ G |E ] ‖F =
σn+1 ‖Q2 QT

2 ‖F = σn+1

√
d , and the corrected matrix

[
B + G A + E

] ≡ [ B A
] (

In+d −
[

Γ
Z

] [
Γ
Z

]T
)

represents, by Theorem2.2, the rank n approximation of [B |A ] such that the
Frobenius norm of the correction matrix [ G |E ] is minimal.

The columns of the matrix [ ΓT |ZT ]T represent a basis for the null space of the
corrected matrix [ B + G |A + E ]. Since Γ is square and nonsingular,

[
B + G A + E

] [ − Id

−Z Γ−1

]
= 0 ,

which gives the TLS solution

XTLS ≡ X(q) ≡ −Z Γ−1 = − [ Y Z
] [ 0

Γ−1

]

= − [ Y Z
]

QT Q

[
0

Γ−1

]
= − V

(q)
22 V

(q)†
12 .

(3.17)

It can be expressed in the closed form

XTLS =
(
AT A − σ2

n+1 In

)†
AT B ,

see [84, Theorem3.10, pp. 62–64]. The solution (3.17) and the correction (3.16)
do not depend on the choice of the matrix Q. Summarizing, the solution (3.17)
represents the unique TLS solution of the problem (2.3), which is minimal in both
the Frobenius norm and the 2-norm. For the Frobenius norm and the 2-norm of
the solution (3.17) see (3.28) in Lemma3.2, see also [84, Theorem3.9, pp. 60–62].
We formulate the result as a theorem, see [84, Theorem3.9, pp. 60–62].
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Theorem 3.3. Consider a TLS problem of the 1st class. If

σp > σp+1 = . . . = σn+d , (3.18)

then with the partitioning of the SVD of [ B |A ] given by (3.2)–(3.3), Δ ≡ q < n,
(3.17) represents the unique TLS solution of the problem (2.3), which is minimal in
both the Frobenius norm and the 2-norm, with the corresponding unique correction
matrix [ G |E ] given by (3.16).

Corollary3.2 and Theorem3.3 imply that the condition

σ′
p > σp+1 = . . . = σn+d , (3.19)

represents a sufficient condition for the existence of the TLS solution of the problem
(2.3). If d = 1, then (3.19) reduces to

σ′
p > σp+1 = . . . = σn+1 , (3.20)

i.e. σ′
n > σn+1 or the multiplicity of σmin (A) is smaller than the multiplicity of

σmin ([ b |A ]).
For d = 1, it is clear from construction that any TLS problem of the first class

must have a solution. For d > 1 this is, unfortunately, no longer true.

3.2.3 Problems of the 1st class – a general case

Consider a TLS problem of the 1st class with a general distribution of singular
values, e < d

σ1 ≥ . . . ≥ σp > σp+1 = . . . = σn+1 = . . .

. . . = σn+e > σn+e+1 ≥ . . . ≥ σn+d ≥ 0 .

We will see that in this general case the problem (2.3) may not have a solution.
First, we apply the same approach as in Section 3.2.2. Since with the partitioning

(3.2)–(3.3), Δ ≡ q, V
(q)
12 ∈ Rd×(q+d) is of full row rank, there exists an orthogonal

matrix Q ∈ R(q+d)×(q+d) such that[
V

(q)
12

V
(q)
22

]
Q ≡ [ vp+1 , . . . , vn+d

]
Q =

[
0 Γ
Y Z

]
, (3.21)

where Γ ∈ Rd×d is square and nonsingular. With the partitioning Q = [ Q1 |Q2 ],
where Q1 ∈ R

(q+d)×q, Q2 ∈ R
(q+d)×d, the columns of Q2 form an orthonormal basis

of the subspace spanned by the columns of V
(q)T
12 , and

[
Γ
Z

]
=

[
V

(q)
12

V
(q)
22

]
Q2 , V

(q)
12 = Γ QT

2 . (3.22)

Such orthogonal matrix Q can be obtained, similarly as in the previous section, e.g.
by decompositions (3.14) or (3.15).

Define the correction matrix

[
G E

] ≡ − [ B A
] [ Γ

Z

] [
Γ
Z

]T

= − [ up+1 , . . . , un+d

]
diag (σp+1 , . . . , σn+d )

Q2 QT
2

[
vp+1 , . . . , vn+d

]T
.

(3.23)
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Similarly to the previous section, the matrix (3.23) is uniquely determined indepen-
dently on the choice of Q in (3.21), see the argumentation below (3.16).

The columns of the matrix [ ΓT |ZT ]T represent a basis for the null space of the
corrected matrix

[
B + G A + E

] ≡ [ B A
] (

In+d −
[

Γ
Z

] [
Γ
Z

]T
)

.

Since Γ is square and nonsingular,[
B + G A + E

] [ − Id

−Z Γ−1

]
= 0 ,

and we can construct

X(q) ≡ −Z Γ−1 = −V
(q)
22 V

(q)†
12 . (3.24)

The matrices (3.24) and (3.23) do not depend on the choice of Q.

In the further text a minimality property of X(q) will be shown. First, the matrix
X(q) given by (3.24) represents the solution of the compatible system (A +E)X =
B + G, with E, G given by (3.23), minimal in the Frobenius norm. Both the
compatibility of the given system and the fact that X(q) solves it follow from the
construction, and can be verified simply by insertion. The range of the solution
X(q) is orthogonal to the null space of A + E, i.e., it is a subset of the range of
(A + E)T , which proves the minimality of the solution (3.24) for the given fixed
correction E, G. (Alternatively, the equality X(q) = (A + E)† (B + G) can be
shown by insertion.)

Now we focus on the question whether there exists another correction Ẽ, G̃
obtained from the last q+d columns of V , that makes the original system compatible,
too, but which yields a solution smaller in norm. (Note that here we do not discuss
about the norm of corrections, or, equivalently, whether such correction yields a
solution of the TLS problem. This will be discussed later, below Theorem3.4.)

Obviously, another correction can be defined similarly to (3.21) by considering
an orthogonal matrix Q̃ such that[

V
(q)
12

V
(q)
22

]
Q̃ =

[
vp+1 , . . . , vn+d

]
Q̃ =

[
Ω Γ̃
Ỹ Z̃

]
, (3.25)

where Γ̃ ∈ Rd×d is nonsingular. Define the correction matrix

[
G̃ Ẽ

] ≡ − [ B A
] [ Γ̃

Z̃

] [
Γ̃
Z̃

]T

. (3.26)

The corrected system (A + Ẽ)X = B + G̃ is compatible and the matrix

X̃ ≡ − Z̃ Γ̃−1 (3.27)

solves this corrected system.
In order to compare the norms of the solutions X(q) and X̃ the following two

lemmas will be useful, see also [84, Theorem3.6, p. 55–56, and Theorem3.9, p. 60–
62].

Lemma 3.2. Let [ Γ̃T | Z̃T ]T ∈ R(n+d)×d have orthogonal columns and assume
Γ̃ ∈ Rd×d is nonsingular. Then the matrix X̃ = − Z̃ Γ̃−1 has the norms

‖ X̃ ‖2
F = ‖ Γ̃−1 ‖2

F − d , ‖ X̃ ‖2 =
1 − σ2

min ( Γ̃ )
σ2

min( Γ̃ )
, (3.28)

where σmin ( Γ̃ ) is the minimal singular value of Γ̃.
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Proof. We follow the proof in [84]. From the CS decomposition [58], see also [32,
pp. 77–79], it follows that there exist orthogonal matrices W1 ∈ Rd×d, W2 ∈ Rn×n,
T2 ∈ Rd×d such that

diag (W1 , W2 )T

[
Γ̃
Z̃

]
T2 =

[
S
C

]
,

where

S = diag ( c1 , . . . , ck , Id−k ) ∈ Rd×d ,

C = diag ( s1 , . . . , sk , 0n−k,d−k) ∈ Rn×d ,

for some k; and where 0 < s1 ≤ . . . ≤ sk < 1, 1 > c1 ≥ . . . ≥ ck > 0, and
c2
j + s2

j = 1, for j = 1 , . . . , k. Then,

‖X̃‖2
F = ‖C S−1‖2

F =
k∑

j=1

1 − s2
j

s2
j

=

⎛
⎝ k∑

j=1

1
s2

j

⎞
⎠− k = ‖Γ̃−1‖2

F − d ,

and

‖X̃‖2 = ‖C S−1‖2 =
1 − s2

1

s2
1

=
1 − σ2

min (Γ̃)
σ2

min (Γ̃)
,

because Γ̃ and S have the same singular values.

Lemma 3.3. Consider X(q) = −Z Γ−1 = −V
(q)
22 V

(q)†
12 given by (3.21)–(3.24)

and X̃ = − Z̃ Γ̃−1 given by (3.25)–(3.27). Then

‖X̃‖F ≥ ‖X(q)‖F and ‖X̃‖ ≥ ‖X(q)‖ , (3.29)

and, moreover, equality of the Frobenius norms holds iff X̃ = X(q).

Proof. Lemma 3.2 gives that the solution X̃ is going to be minimal in Frobenius
or 2-norm when ‖Γ̃−1‖F is minimized, or when σd (Γ̃) is maximized, respectively.
Note that 0 < σj (Γ̃) ≤ 1. For any Q̃, the matrices V

(q)
12 and V

(q)
12 Q̃ = [ Ω | Γ̃ ]

have the same singular values. Theorem2.1 applied to the matrices [ Ω | Γ̃ ] and Γ̃
gives

σj (V
(q)
12 ) = σj

( [
Ω Γ̃

] ) ≥ σj ( Γ̃ ) , j = 1 , . . . , d , (3.30)

and all these inequalities become equalities iff Ω = 0. (Moreover, Theorem2.1 says
that the singular values can not decrease while successively adding columns of Ω.)

The choice Q̃ ≡ Q ensures Ω = 0 and thus it implies that all singular values are
maximal. Consequently X(q) constructed using Q has minimal Frobenius as well as
2-norm among all X̃ . (Note that the minimum for the Frobenius norm is reached
iff all the inequalities in (3.30) become equalities. The minimum for the 2-norm is
reached when only the dth (smallest) singular values in (3.30) are equal.)

Summarizing, it was shown that X(q) is the solution of (A + E)X = B + G,
where the correction is given by (3.23); X(q) is minimal in the Frobenius norm, and
it is minimal among all solutions having the form (3.27) of all compatible systems
(A + Ẽ)X = B + G̃, with the correction having the form (3.26). The first part of
this assertion can be shown elementarily, the second part was originally shown by
Van Huffel, Vandewalle [84, Theorem3.9].

The so called classical TLS algorithm [82, 83], see also [84], applied to a TLS
problem of the 1st class returns as output the matrix X(q) given by (3.24) with the
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matrices G, E given by (3.23). In the rest of this section we will show that X(q)

does not generally represent a TLS solution of the given problem (2.3).

Now, we concentrate on an important question: whether (3.24) represents a TLS
solution of the problem (2.3), or equivalently, whether the Frobenius norm of the
correction matrix (3.23) is minimal. The following remark shows on an example
that X(q) need not be a TLS solution.

Remark 3.1. Let q = n, then the solution (3.24) is X(q) = 0 and the correction
matrix given by (3.23) is [ G |E ] ≡ − [ B | 0 ]. If e < d, then, for example, the
ordinary least squares yields a correction [ Ḡ | Ē ] ≡ [ (AA† − I)B | 0 ] having in
general smaller Frobenius norm than [ G |E ]. Equivalently, X(q) does not represent
the TLS solution in general.

Further investigation is based on the following theorem.

Theorem 3.4. Consider a TLS problem of the 1st class. Let (2.6) be the SVD
of [ B |A ] with the partitioning given by (3.2)–(3.3), Δ ≡ q < n. Consider an
orthogonal matrix Q̃ such that[

V
(q)
12

V
(q)
22

]
Q̃ =

[
Ω Γ̃
Ỹ Z̃

]
, Q̃ =

[
Q̃1 Q̃2

]
(3.31)

where Q̃1 ∈ R(q+d)×q, Q̃2 ∈ R(q+d)×d, and Γ̃ ∈ Rd×d is nonsingular, and define

[
G̃ Ẽ

] ≡ − [ B A
] [ Γ̃

Z̃

] [
Γ̃
Z̃

]T

= − [ up+1 , . . . , un+d

]
diag (σp+1 , . . . , σn+d )

Q̃2 Q̃T
2

[
vp+1 , . . . , vn+d

]T
.

(3.32)

Then the following two assertions are equivalent:

(i) There exists an index k, 0 ≤ k ≤ e < d, and an orthogonal matrix Q̂ in the
block diagonal form

Q̂ =
[

Q′ 0
0 Id−k

]
∈ R

(q+d)×(q+d) , Q′ ∈ R
(q+k)×(q+k) , (3.33)

and using Q̂ in (3.31), (3.32) instead of Q̃ gives the same [ G̃ | Ẽ ].

(ii) The matrix [ G̃ | Ẽ ] satisfies

∥∥ [ G̃ Ẽ
] ∥∥

F
=

⎛
⎝ n+d∑

j=n+1

σ2
j

⎞
⎠1/2

. (3.34)

Remark 3.2. If the condition (i) in Theorem 3.4 is satisfied for some index k,
0 ≤ k ≤ e, then it is satisfied for any l, k ≤ l ≤ e, too, in particular for l ≡ e.
The assertion (i) is usually used with e instead of k in the further text.

Proof. First we prove the implication (i) =⇒ (ii). From (3.33) we get

Q̂2 Q̂T
2 =

[
Q′

2 0
0 Id−k

] [
Q′

2 0
0 Id−k

]T

=
[

Q′
2

0

] [
(Q′

2)
T 0

]
+
[

0
Id−k

] [
0 Id−k

]
,
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where Q̂2 ∈ R(q+d)×d, Q′
2 ∈ R(q+k)×k, which gives, using (3.32),

‖ [ G̃ Ẽ
] ‖2

F = ‖ diag (σp+1 , . . . , σn+d ) Q̂2 Q̂T
2 ‖2

F

= σ2
n+1 ‖Q′

2 (Q′
2)

T ‖2
F + σ2

n+1 (e − k) +
∑n+d

j=n+e+1
σ2

j

= σ2
n+1 e +

∑n+d

j=n+e+1
σ2

j ,

and (3.34) is proved.
Now we prove the implication (ii) =⇒ (i). Let [ G̃ | Ẽ ] be given by (3.31), (3.32)

and let (3.34) holds. We prove that there exists Q̂ of the form (3.33) giving [ G̃ | Ẽ ].
Define the splitting

Q̃ =
[

Q̃1 Q̃2

]
=
[

Q̃11 Q̃12

Q̃21 Q̃22

]

such that Q̃11 ∈ R(q+e)×q , Q̃21 ∈ R(d−e)×q, Q̃12 ∈ R(q+e)×d, Q̃22 ∈ R(d−e)×d, see
Figure 3.2.

Q̃ =

Q̃11 Q̃12

Q̃21 Q̃22

q︷ ︸︸ ︷ d︷ ︸︸ ︷⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

q + e

⎫⎪⎪⎬
⎪⎪⎭ d − e

Figure 3.2: Dimensions of the individual matrix blocks in the
partitioning of matrix Q̃.

The matrix [ G̃ | Ẽ ] given by (3.31) satisfies

‖ [ G̃ Ẽ
] ‖2

F = ‖ diag (σp+1 , . . . , σn+d ) Q̃2 ‖2
F

= σ2
n+1 ‖ Q̃12 ‖2

F + ‖D Q̃22 ‖2
F ,

where D ≡ diag (σn+e+1 , . . . , σn+d ). Note that ‖Q̃12‖2
F = d − ‖Q̃22‖2

F , since
the matrix Q̃2 consists of d orthonormal columns. Thus

‖ [ G̃ Ẽ
] ‖2

F = σ2
n+1 ( d − ‖ Q̃22 ‖2

F ) + ‖D Q̃22 ‖2
F

= σ2
n+1 d − ‖ (σ2

n+1 Id−e − D2)1/2 Q̃22 ‖2
F .

The assumption (3.34) requires

σ2
n+1 (d − e) −

∑n+d

j=n+e+1
σ2

j = ‖ (σ2
n+1 Id−e − D2)1/2 Q̃22 ‖2

F .

Since σn+1 > σn+e+l for all l = 1 , . . . , d−e, this implies that all rows of Q̃22 must
have norm equal to one. Consequently, since Q̃ is an orthogonal matrix, Q̃21 = 0,
i.e.

Q̃ =
[

Q̃1 Q̃2

]
=
[

Q̃11 Q̃12

0 Q̃22

]
.
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Consider the SVD of the matrix Q̃22, Q̃22 = S [ Id−e | 0 ] WT = [ S | 0 ] WT , where
S ∈ R(d−e)×(d−e) and W ∈ Rd×d are square orthogonal matrices. Define orthogonal
matrices

R ≡ W

[
0 ST

Ie 0

]
∈ R

d×d

and

Q̂ ≡ Q̃

[
Iq 0
0 R

]
=
[

Q̃11 Q̃12 R
0 [ 0 | Id−e ]

]
.

Because Q̂2 Q̂T
2 = (Q̃2 R) (Q̃2 R)T = Q̃2 Q̃T

2 , the matrix Q̂ yields the same correc-
tion (3.32) as Q̃. Since Q̂ is orthogonal, the columns of Q̃12 R corresponding to the
block Id−e must be zero, thus

Q̂ =
[

Q′ 0
0 Id−e

]

has the form (3.33) with Q′ ∈ R(q+e)×(q+e).

The following remark slightly extends the assertion of Theorem3.4.

Remark 3.3. Let Q̃ be the a matrix having the general block diagonal form Q̃ =
diag (Q′ , Q′′ ), where Q′ ∈ R(q+k)×(q+k), Q′′ ∈ R(d−k)×(d−k), 0 ≤ k ≤ e < d.
Then define Q̂ ≡ Q̃diag ( Iq+k , (Q′′)T ) = diag (Q′ , Id−k ), obviously Q̂ yields the
same correction (3.32) as Q̃, and has the form (3.33). The other implication is
trivial.

Consequently, the identity block Id−k in Q̂ in the condition (i) of Theorem 3.4
can be replaced by any orthogonal matrix Q′′ having the same dimensions.

Application of Theorem3.4 on the construction (3.21)–(3.24) immediately gives the
necessary and sufficient condition for X(q) given by (3.24) to be a TLS solution,
and thus a sufficient condition for existence of a TLS solution. We formulate it as
the following corollary.

Corollary 3.3. Consider a TLS problem (2.3) of the 1st class. The construction
(3.21)–(3.24) yields the TLS solution XTLS ≡ X(q) if and only if there exists an
orthogonal matrix Q̂ in the block diagonal form (3.33) such that substituting Q̂ for
Q in (3.21)–(3.23) gives the same correction [ E |G ].

Proof. Let X(q) given by (3.24) represent a TLS solution of the problem (2.3). Then
the correction [ E |G ] given by (3.23) is minimal in Frobenius norm, i.e. it satisfies
(3.34). Consequently, there exists an orthogonal matrix Q̂ in the form (3.33) by
Theorem3.4.

Let the matrix Q from (3.21) have the block diagonal form (3.33). Then [E |G ]
given by (3.23) satisfies (3.34) by Theorem3.4 and, further, it represents a cor-
rection (reducing rank of [B |A ] to n) which is minimal in the Frobenius norm,
by Theorem2.2. Consequently, XTLS ≡ X(q) defined by (3.24) represents a TLS
solution of the problem (2.3) by Theorem3.4.

Now we describe three disjoint sets of problems of the 1st class. The first set F1

contains problems for which there always exist Q in the block diagonal form (3.33)
satisfying (3.21) (i.e. (3.31) with Ω = 0). For such problems the TLS solution
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in the form (3.24) (i.e., the TLS solution having the minimality property (3.29))
always exists, by Corollary 3.3.

The second set F2 contains problems for which there always exists Q in the
block diagonal form (3.33) satisfying (3.31) but only with Ω �= 0. Such problems
always have a TLS solution but not in the form (3.24). Here X(q) does not represent
a TLS solution.

The third set F3 contains problems for which there is no Q in the block diagonal
form (3.33) yielding Γ nonsingular in (3.31). These problems do not have a TLS
solution in the form (3.24), (3.27).

The solution X(q) given by (3.24) is commonly used for all problems of the 1st
class (e.g., in the TLS algorithm, see [84]). However for any problem from the set
F2 ∪ F3 it does not solve the TLS problem; in these cases we call X(q) nongeneric
(nonoptimal) solution.

In order to describe these three sets we introduce the following notation. Define
the partitioning of the matrix V

(q)
12 for a given k, 0 ≤ k ≤ e < d,

V
(q)
12 =

[
W (q,k) V

(−k)
12

]
, (3.35)

where W (q,k) ∈ Rd×(q+k), V
(−k)
12 ∈ Rd×(d−k), see Figure 3.3.

V
(q)
12 = W (q,k) V

(−k)
12

q + k︷ ︸︸ ︷ d − k︷ ︸︸ ︷⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

d

︸ ︷︷ ︸
d

Figure 3.3: Dimensions of the individual matrix blocks in the
partitioning (3.35).

Obviously, since rank (V (q)
12 ) = d (TLS problem of the 1st class), rank (V (−k)

12 ) ≤
d − k implies rank (W (q,k)) ≥ k.

3.2.4 Problems of the 1st class for which rank (V
(−e)
12 ) = d − e

and rank (W (q,e)) = e, set F1

Consider a TLS problem of the 1st class. Let rank (W (q,e)) = e in (3.35), then
V

(−e)
12 must be of full column rank, i.e. rank (V (−e)

12 ) = d − e.

First we give a lemma which will allow to relate the partitioning (3.35) to the
construction of a solution as in (3.21)–(3.24).

Lemma 3.4. Let (2.6) be the SVD of [ B |A ] with the partitioning given by (3.2)–
(3.3), Δ ≡ q < n. Consider the partitioning (3.35) of V

(q)
12 with k ≡ e. The

following two assertions are equivalent:

(i) The matrix W (q,e) has rank equal to e.

(ii) There exists Q of the block diagonal form (3.33) with k ≡ e satisfying (3.21).
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Proof. Let W (q,e) ∈ Rd×(q+e) have rank equal to e. Then rank (V (−e)
12 ) = d − e.

There exists an orthogonal matrix H ∈ R(q+e)×(q+e) (e.g., a product of Householder
transformation matrices) such that W (q,e) H = [ 0 |M ] where M ∈ R

d×e is of full
column rank. Putting Q ≡ diag (H , Id−e ) yields V

(q)
12 Q = [ 0 |Γ ], where the

square matrix Γ ≡ [ M |V (−e)
12 ] ∈ R

d×d has rank equal to d.
On the contrary, let Q have the form (3.33) with k ≡ e and satisfy (3.21).

Denote Γ = [ Γ1 |Γ2 ], where Γ1 ∈ Rd×e, Γ2 ∈ Rd×(d−e). Obviously Γ1 = W (q,e) Q′,
Γ2 = V

(−e)
12 Id−e = V

(−e)
12 . Since Γ is nonsingular, rank (Γ1) = e. Moreover, Q′ is

an orthogonal matrix and thus rank (W (q,e)) = e.

Obviously, if the problem is of the 1st class and rank (W (q,k)) = k for some 0 ≤
k ≤ e, then for any l, k ≤ l ≤ e, rank (W (q,l)) = l.

The following theorem summarizes the case in which our construction (3.21)–
(3.24) gives the TLS solution with the minimality property (3.29).

Theorem 3.5. Let (2.6) be the SVD of [ B |A ] with the partitioning given by (3.2)–
(3.3), m ≥ n + d, Δ ≡ q < n (p = n − q). Let the TLS problem (2.3) be of the
1st class, i.e. V

(q)
12 is of full row rank equal to d. Let σp > σp+1 = . . . = σn+1 =

. . . = σn+e, 1 ≤ e ≤ d. Consider the partitioning of V
(q)
12 given by (3.35) with

k ≡ e. If
rank (W (q,e)) = e , (3.36)

then XTLS ≡ −V
(q)
22 V

(q)†
12 , see also (3.24), represents the TLS solution of the prob-

lem (2.3) having the minimality property (3.29), with the corresponding correction
[ G |E ] given by (3.23).

The proof follows immediately from Lemma 3.4 and Corollary3.3.

Remark 3.4. Naturally, both problems of the 1st class discussed earlier in Sections
3.2.1 and 3.2.2 belong to the set F1, too. In the first case q ≡ 0, V

(q)
12 ≡ V12 is

square nonsingular. Thus any partitioning of the form (3.35) yields W (0,k) with the
full column rank equal to k. In the second case e ≡ d. Thus W (q,d) ≡ V

(q)
12 is of

full row rank equal to d.
In both cases, one of the diagonal blocks of Q = diag (Q′ , Id−e ) from the

condition (ii) in Lemma3.4 is nonexistent in general.

Please note that unlike in Sections 3.2.1 and 3.2.2 here the information about
singular values of A and [ B |A ], except for the special cases q ≡ 0 or e ≡ d
does not guarantee that the construction (3.24) gives the TLS solution (see also
Corollaries 3.1 and 3.2).

3.2.5 Problems of the 1st class for which rank (V
(−e)
12 ) = d − e

and rank (W (q,e)) > e, set F2

Consider a TLS problem of the 1st class. Let rank (V (−e)
12 ) = d − e and ρ ≡

rank (W (q,e)) > e in (3.35).

Because V
(−e)
12 is of full column rank, there exists Q̃ having the block diagonal

form (3.33) with k ≡ e, such that (3.31) holds and Γ̃ is nonsingular. Consequently
there exists the correction [ G̃ | Ẽ ] defined by (3.32) minimal in Frobenius norm, see
Theorem3.4, and the matrix

X̃ ≡ − Z̃ Γ̃−1 (3.37)
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represents a TLS solution.

Consequently problems of the first class having full column rank V
(−e)
12 (i.e.

problems from the set F1 ∪ F2) always have a TLS solution. But if W (q,e) has
rank bigger than e, then X(q) = −V

(q)
22 V

(q)†
12 given by (3.24) does not represent

a TLS solution. Recall that in such case X(q) is called nongeneric (nonoptimal)
solution, i.e. XNGN ≡ X(q).

Note that here the information about singular values of A and [ B |A ] can be
used to guarantee that the TLS solution exists, i.e., that the given problem belongs
to the set F1 ∪ F2, but the condition is only sufficient and practically useless. We
do not formulate this condition here explicitly, but it is based on the assertion of
Theorem3.1. The idea is analogous to Corollaries 3.1 and 3.2: suitable singular
value inequalities guarantee that V

(q)
12 is of full row rank and V

(−e)
12 is of full column

rank. Together with the interlacing property (Theorem2.1) it gives a sufficient
condition for existence of the TLS solution.

3.2.6 Problems of the 1st class for which rank (V
(−e)
12 ) < d − e

and rank (W (q,e)) > e, set F3

Consider a TLS problem of the 1st class. Let rank (V (−e)
12 ) < d− e in (3.35). Then

V
(−e)
12 is rank deficient and rank (W (q,e)) > e.

Obviously in this case there does not exist Q̃ in the block diagonal form (3.33)
yielding Γ̃ from (3.31) nonsingular. Consequently problems with rank deficient
V

(−e)
12 do not have the TLS solution in the form (3.27). Similarly as in the F2 set, the

matrix X(q) = −V
(q)
22 V

(q)†
12 given by (3.24) is called the nongeneric (nonoptimal)

solution, i.e. XNGN ≡ X(q).

For clarification of the structure of sets F1, F2, and F3 of problems see also
Figure 3.5 (p. 55).

3.2.7 Correction corresponding to the solution X(q)

In the further text we focus on the correction and solution given by (3.23), (3.24),
respectively. In particular we focus on the cases with nongeneric solution. First we
establish bounds for the corresponding correction. Obviously, the correction [ G |E ]
given by (3.23) is not optimal in the meaning of reducing rank in general; the norm
of the correction can grow beyond (

∑n+d
j=n+1 σ2

j )1/2.

Lemma 3.5. Let [ G |E ] be the correction matrix given by (3.21), (3.23). Then
the Frobenius norm of the correction satisfies⎛

⎝ p+d∑
j=p+1

σ2
j

⎞
⎠1/2

≥ ∥∥ [ G E
] ∥∥

F
≥
⎛
⎝ n+d∑

j=n+1

σ2
j

⎞
⎠1/2

. (3.38)

See also [89, Equation (5.4)]. Before the proof of Lemma 3.5, we quickly discuss the
inequality (3.38) and prove an auxiliary lemma. Obviously:

(i) The norm of the correction is equal to the lower bound in (3.38) iff the con-
dition (3.36) is satisfied, i.e. iff the problem belongs to the set F1, see also
Theorem3.5.

(ii) Both (left and right) inequalities in (3.38) become equalities iff

σp+j = σn+j , ∀ j = 1 , . . . , d . (3.39)

Note that n = p + q. The equalities in (3.39) imply that either
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a) q = 0 (the simplest case discussed in Section 3.2.1), or

b) σp+1 = . . . = σn+d (the special case discussed in Section 3.2.2).

Lemma 3.6. Let [ G |E ] be the correction matrix given by (3.21), (3.23). Then
the rank of the correction matrix satisfies

min { s , d } ≥ rank
( [

G E
] ) ≥ max { 0 , s − n } , (3.40)

and the rank of the corrected matrix satisfies

max { 0 , s − d } ≤ rank
( [

B + G A + E
] ) ≤ min { s , n } , (3.41)

where s ≡ rank ([ B |A ]).

Proof. The upper bound in (3.40) follows from the fact that the correction matrix
is the rank s matrix [ B |A ] projected onto a d dimensional subspace by the orthog-
onal projector [ Γ

Z ][ Γ
Z ]T . The lower bound in (3.40) follows from the fact that the

correction is constructed such that it makes the system compatible, it has to reduce
the rank of [B |A ] at least to n (and, naturally, it must be positive).

Similarly, the upper bound in (3.41) is given through the fact that the corrected
matrix is the rank s matrix [ B |A ] projected onto a n dimensional subspace by
the orthogonal projector (In+d − [ Γ

Z ][ Γ
Z ]T ), or equivalently from the fact that the

correction matrix is constructed such that the corrected matrix have rank at most
n (and, naturally, it must be smaller than the rank of the original matrix). The
lower bound in (3.41) can not be smaller than s − d because the rank of [ G |E ] is
at most d (naturally it must be positive).

Proof of Lemma 3.5. The lower bound in (3.38) is clear, it follows directly from
Theorem2.2. Now, we derive the upper bound. From (3.40), the matrix [G |E ]
has rank at most ρ ≡ min { s , d }, and it is obtained by projecting of M ≡
U Σ(q)

2 [ vp+1 , . . . , vn+d ] onto a subspace with dimension at most ρ. When we
approximate the matrix M by the nearest (in the Frobenius norm) matrix with
rank equal to ρ, we obtain the correction with the maximal Frobenius norm equal
to the upper bound in (3.39).

Recall that the matrix X(q) = −V
(q)
22 V

(q)†
12 given by (3.24) represents the min-

imum norm solution of the compatible system (A + E)X = B + G, where the
correction [ G |E ] is defined by (3.23). Two another important and useful interpre-
tations of this (possibly nongeneric) solution of the original TLS problem (2.3) can
be established.

Lemma 3.7. The matrix X(q) = −V
(q)
22 V

(q)†
12 given by (3.24) represents the unique

solution of the constrained minimization problem

min
X,E,G

∥∥ [ G E
] ∥∥

F
subject to (A + E)X = B + G

and
[

G E
] [ 0

w

]
= 0 , ∀

[
0
w

]
∈ R

([
V

(q)
12

V
(q)
22

])
,

(3.42)

with the corresponding correction [ G |E ] defined by (3.23).

Since σn−q > σn−q+1, the additional constraint ensures that the correction matrix
in (3.42) is given uniquely. Consequently, the constrained problem (3.42) always
has unique solution XConst. ≡ X(q). See [84, Definition 3.3, p. 78 and Theorem3.15,
pp. 80–82], see also Lemma 3.11.
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Lemma 3.8. The matrix X(q) = −V
(q)
22 V

(q)†
12 given by (3.24) represents the unique

minimum norm TLS solution of the modified TLS problem

min
X,Ê,Ĝ

∥∥ [ Ĝ Ê
] ∥∥

F
subject to (Â + Ê)X = B̂ + Ĝ , (3.43)

where

[
B̂ Â

]
=
(∑n−q

j=1
uj σj vT

j

)
+ σn+1

(∑n+d

j=n−q+1
uj vT

j

)
,

with the corresponding correction [ Ĝ | Ê ], ‖[ Ĝ | Ê ]‖F = σn+1

√
d .

Obviously the problem (3.43) is a TLS problem of the 1st class (from the set F1);
moreover it is the special case problem described in Section 3.2.2. The problem
is called truncated total least squares (T-TLS) problem for given A, B, with the
solution XT-TLS ≡ X(q). See [84, note on p. 82], see also Lemma3.12.

3.3 Problems of the 2nd class

Problems which are not of the 1st class we call problems of the 2nd class.

Definition 3.2 (Problem of the 2nd class). Consider a TLS problem (2.3), m ≥
n + d. Let (2.6) be the SVD of [ B |A ] with the partitioning given by (3.2)–(3.3),
Δ ≡ q, where q is the integer related to the multiplicity of σn+1, given by (3.1).
Let V

(q)
12 be rank deficient. Then we call (2.3) a TLS problem of the 2nd class.

In this section we focus on problems (2.1) for which V
(q)
12 does not have full row

rank. Here the right singular vector subspace given by the last (q + d) singular
vectors vp+1 , . . . , vn+d does not contain sufficient information for constructing any
solution in the form (3.27). Thereby the problems of the 2nd class can not have
a TLS solution having the form (3.27). In order to get at least some solution Van
Huffel and Vandewalle follow the single right-hand side concept. The right singular
vector subspace [ (V (q)

12 )T | (V (q)
22 )T ]T used for the construction (3.21)–(3.24) in all

previous cases, is successively extended with additional right singular vectors until
a full row rank block V

(t)
12 ∈ Rd×(t+d) is found in the upper right corner of V

(i.e. V
(t−1)
12 is rank deficient), see Figure 3.4. Then the matrix X(t) = −V

(t)
22 V

(t)†
12

with the corresponding correction can be constructed analogously to (3.21)–(3.24),
with q replaced by t. Obviously, this matrix might not be uniquely defined when
σn−t = σn−t+1. In order to handle a possible multiplicity of σn−t+1, it is convenient
to consider the following notation

σn−q̃ > σn−q̃+1 = . . . = σn−t+1 , (3.44)

where q̃ ≥ t; put for simplicity n − q̃ ≡ p̃. (If σn−q̃ ≡ σp̃ is nonexistent, then
q̃ = n.) The condition that V

(q̃)
12 is of full row rank equal to d is readily satisfied,

since V
(q̃)
12 extends V

(t)
12 . Then X(q̃) and [ G |E ] can be constructed as in (3.21)–

(3.24), with q replaced by q̃. The construction is completely analogous.
Since V

(q̃)
12 ∈ Rd×(q̃+d) is of full row rank, there always exists an orthogonal

matrix Q ∈ R(q̃+d)×(q̃+d) such that[
V

(q̃)
12

V
(q̃)
22

]
Q ≡ [ vp̃+1 , . . . , vn+d

]
Q =

[
0 Γ
Y Z

]
, (3.45)
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V =

}
d⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
n

d︷ ︸︸ ︷q︷︸︸︷

︸ ︷︷ ︸
d

︸ ︷︷ ︸
t

︸ ︷︷ ︸
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�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�
�

=

[
V

(t)
11 V

(t)
12

V
(t)
21 V

(t)
22

]
.

Figure 3.4: Dimensions and the partitioning of the matrix V for
problems of the 2nd class.

where Γ ∈ Rd×d is nonsingular. Define the correction matrix

[
G E

] ≡ − [ B A
] [ Γ

Z

] [
Γ
Z

]T

(3.46)

The columns of the matrix [ ΓT |ZT ]T represent a basis for the null space of the
corrected matrix [ B+G |A+E ] ≡ [ B |A ]. Since Γ is nonsingular, we can construct

X(q̃) ≡ −Z Γ−1 = −V
(q̃)
22 V

(q̃)†
12 . (3.47)

The matrices (3.47) and (3.46) do not depend on the choice of Q.
Similarly to the problems of the 1st class, the minimality property of X(q̃) can

be shown. It is the solution of the compatible corrected system (A+E)X = B +G
with E, G given by (3.46), minimal in the Frobenius norm. The Frobenius and the
2-norm of the solution X(q̃) are given by Lemma3.2 (the extension of Lemma 3.3
is straightforward, too). Further, X(q̃) has minimal Frobenius and 2-norm over
all solutions X̃ that can be obtained from the construction (3.25)–(3.27) with q

replaced by q̃. (Note that the solution obtained from V
(t)
12 , where t is the smallest

index for which V
(t)
12 is of full column rank, is one of these X̃ solutions.) Thus, the

substitution of q̃ for t ensures, except of the uniqueness of the construction, the
solution with smallest norm, on the other hand it causes increasing the correction
norm. Clearly, the Frobenius norm of the correction (3.46) is

∥∥[ G E
]∥∥

F
>

⎛
⎝ n+d∑

j=n+1

σ2
j

⎞
⎠1/2

,

always bigger that the smallest possible correction reducing rank of [B |A ] to n.
Thus the matrix X(q̃) given by (3.47) does not represent the TLS solution. The
solution X(q̃) = −V

(q̃)
22 V

(q̃)†
12 is called nongeneric (nonoptimal) solution of the

original TLS problem (2.3), see [84, Definition 3.3, p. 78].
Similarly to the problems of the 1st class two other important and useful inter-

pretations of this nongeneric solution can be established.

Lemma 3.9. The matrix X(q̃) = −V
(q̃)
22 V

(q̃)†
12 given by (3.47) represents the unique
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solution of the constrained minimization problem

min
X,E,G

∥∥ [ G E
] ∥∥

F
subject to (A + E)X = B + G

and
[

G E
] [ 0

w

]
= 0 , ∀

[
0
w

]
∈ R

([
V

(q̃)
12

V
(q̃)
22

])
,

(3.48)

with the corresponding correction [ G |E ] defined by (3.23).

Since σn−q̃ > σn−q̃+1, the additional constraint ensures that the correction matrix
in (3.48) is given uniquely. Consequently, the constrained problem (3.48) always
has unique solution XConst. ≡ X(q̃). See [84, Definition 3.3, p. 78 and Theorem3.15,
pp. 80–82], the problem (3.48) from Lemma3.9 is in [84] considered as the definition
of the nongeneric solution; see also Lemma3.11.

Lemma 3.10. The matrix X(q̃) = −V
(q̃)
22 V

(q̃)†
12 given by (3.47) represents the

unique minimum norm TLS solution of the modified TLS problem

min
X,Ê,Ĝ

∥∥ [ Ĝ Ê
] ∥∥

F
subject to (Â + Ê)X = B̂ + Ĝ , (3.49)

where

[
B̂ Â

]
=
(∑p̃

j=1
uj σj vT

j

)
+ σn−t+1

(∑n+d

j=p̃+1
uj vT

j

)
,

with the corresponding correction [ Ĝ | Ê ], ‖[ Ĝ | Ê ]‖F = σn−t+1

√
d . (Recall that

σn−q̃+1 = σn−t+1, see (3.44).)

Obviously the problem (3.49) is a TLS problem of the 1st class (from the set F1);
moreover it is the special case problem described in Section 3.2.2. The problem
is called truncated total least squares (T-TLS) problem for given A, B, with the
solution XT-TLS ≡ X(q̃). See [84, note on p. 82], see also Lemma3.12.

3.4 Summary and the TLS algorithm

The following theorem unifies concepts of the (possibly nongeneric) solutions (3.7),
(3.17), (3.24) and (3.47) of the TLS problem (2.3) established for different classes of
problems independently on particular properties described in the previous sections.

Let (2.6) be the SVD of [B |A ] with the partitioning given by (3.2)–(3.3), Δ ≡
κ, 0 ≤ κ ≤ n, where κ is the smallest integer such that:

(i) the submatrix V
(κ)
12 is of full row rank, and

(ii) either σn−κ > σn−κ+1, or κ = n.

Since V
(κ)
12 ∈ R

d×(κ+d) is of full row rank, there always exists an orthogonal matrix
Q ∈ R(κ+d)×(κ+d) such that[

V
(κ)
12

V
(κ)
22

]
Q ≡ [ vn−κ+1 , . . . , vn+d

]
Q =

[
0 Γ
Y Z

]
, (3.50)

where Γ ∈ R
d×d is nonsingular. Define the correction matrix

[
G E

] ≡ − [ B A
] [ Γ

Z

] [
Γ
Z

]T

. (3.51)
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And finally define the matrix

X(κ) ≡ −Z Γ−1 = −V
(κ)
22 V

(κ)†
12 . (3.52)

Then X(κ), given by (3.52), is the solution of the compatible system (A + E)X =
B + G, with E, G given by (3.51), minimal in the Frobenius norm. Matrices (3.51)
and (3.52) are independent on the particular choice of Q in (3.50). Obviously the
value of κ is either equal to q, if the problem is of the 1st class, or to q̃, if the
problem is of the 2nd class.

The solution X(κ) given by (3.52) is identical to the solution computed by the
classical TLS algorithm introduced by Van Huffel and Vandewalle, see [84, Algo-
rithm 3.1, pp. 87–88]. A fully documented Fortran 77 program of this classical
TLS algorithm is given in [83, 82]. (The code can be obtained through Netlib (cf.
http://www.netlib.org/vanhuffel/).)

Algorithm 3.1 (classical TLS algorithm).

00: set j = 0

01: if rank (V (j)
12 ) = d and j = n , then goto line 05

02: if rank (V (j)
12 ) = d and σn−j > σn−j+1 , then goto line 05

03: set j = j + 1
04: goto line 01

05: set κ = j

06: compute X(κ) = −V
(κ)
22 V

(κ)†
12

07: return κ , X(κ)

Summarizing, let (2.1) be an approximation problem, and X(κ) the solution given by
(3.52), i.e., the solution returned by the classical TLS algorithm. If σn−κ+1 = σn+1,
then the problem is of the 1st class (in particular for κ = 0), and if σn−κ+1 > σn+1,
then the problem is of the 2nd class. In more details:

(i) If the problem is of 1st class and rank (W (q,e)) = e, then X(κ) ≡ XTLS

represents the TLS solution (it solves the TLS problem (2.3)), κ ≡ q, the
problem belongs to the set F1.

(ii) If the problem is of 1st class and rank (W (q,e)) > e, then X(κ) ≡ XNGN rep-
resents the nongeneric solution (solution of the constrained problem (3.42)),
κ ≡ q, i.e., the problem belongs to the set F2 ∪ F3.

(iii) If the problem is of 2nd class, then X(κ) ≡ XNGN represents the nongeneric
solution (solution of the constrained problem (3.48)), κ ≡ q̃.

(Recall that the problems from the set F1 ∪ F2 always have a TLS solution.) Fig-
ure 3.5 quickly recapitulates properties of problems and differences between prob-
lems in these individual classes.

As in the previous sections, the matrix X(κ) = −V
(κ)
22 V

(κ)†
12 given by (3.52), i.e.

the result of the classical TLS algorithm, represents the minimum norm solution
of the compatible system (A + E)X = B + G, with E, G given by (3.51). This
possibly nongeneric solution of the original TLS problem (2.3) has two further
interpretations.

The following lemma summarizes the previous Lemmas 3.7 and 3.9 in a general
form (independent on the particular assumptions).
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problem

solution(s)

problem
properties

F1 F2 F3 S

��XTLS ≡ −V
(q)
22 V

(q)†
12 �� XNGN ≡ −V

(q)
22 V

(q)†
12 ��XNGN ≡ −V

(q̃)
22 V

(q̃)†
12

�� TLS solution exists

rank (W (q,e)) = e

rank (V
(−e)
12 ) = d − e

�� rank (W (q,e)) > e

rank (V
(−e)
12 ) = d − e

�� rank (W (q,e)) > e

rank (V
(−e)
12 ) < d − e

��

��
problems of the 1st class, rank (V

(q)
12 ) = d

��
2nd cl., rank (V

(q)
12 ) < d︸ ︷︷ ︸

All approximation problems AX ≈ B

Figure 3.5: Properties of problems belonging to the sets F1, F2

and F3. The set S here denotes the set of problems of 2nd class.

Lemma 3.11. The matrix X(κ) = −V
(κ)
22 V

(κ)†
12 given by (3.52) represents the

unique solution of the constrained minimization problem

min
X,E,G

∥∥ [ G E
] ∥∥

F
subject to (A + E)X = B + G

and
[

G E
] [ 0

w

]
= 0 , ∀

[
0
w

]
∈ R

([
V

(κ)
12

V
(κ)
22

])
,

(3.53)

with the corresponding correction [ G |E ] defined by (3.51).

The additional constraint in (3.53) can be equivalently rewritten as [G |E ] [ 0
Y ] = 0

where Y is given in (3.50). Since σn−κ > σn−κ+1, the correction matrix in (3.53)
is given uniquely. Consequently, the constrained problem (3.53) always has unique
solution XConst. ≡ X(κ). See [84, Definition 3.3, p. 78 and Theorem3.15, pp. 80–82],
see also Lemmas 3.7 and 3.9.

Remark 3.5. Since the matrix (3.50) has orthonormal columns, ZT Y = 0 and
consequently X(κ)T Y = − (Γ−1)T ZT Y = 0. Because the constrained problem
(3.53) has unique solution equal to X(κ), the additional constraint implies that

XT w = 0 , ∀
[

0
w

]
∈ R

([
V

(κ)
12

V
(κ)
22

])
.

See also [84, Eq. 3.101, p. 79]. Similarly in (3.42) and (3.48).

The following lemma summarizes the previous Lemmas 3.8 and 3.10 in a general
form (independent on the particular assumptions).

Lemma 3.12. The matrix X(κ) = −V
(κ)
22 V

(κ)†
12 given by (3.52) represents the

unique minimum norm TLS solution of the modified TLS problem

min
X,Ê,Ĝ

∥∥ [ Ĝ Ê
] ∥∥

F
subject to (Â + Ê)X = B̂ + Ĝ , (3.54)

where [
B̂ Â

]
=
(∑n−κ

j=1
uj σj vT

j

)
+ σn−κ+1

(∑n+d

j=n−κ+1
uj vT

j

)
,

with the corresponding correction [ Ĝ | Ê ], ‖[ Ĝ | Ê ]‖F = σn−κ+1

√
d .
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Obviously the problem (3.54) is a TLS problem of the 1st class (from the set F1);
moreover it is the special case problem described in Section 3.2.2. The problem
is called truncated total least squares (T-TLS) problem for given A, B, with the
solution XT-TLS ≡ X(κ). See [84, note on p. 82], see also Lemmas 3.8 and 3.10.

It is worth to note that the T-TLS concept allows us to assume that the orig-
inal problem AX ≈ B is a perturbation of the modified problem ÂX ≈ B̂, or
contrariwise. From the T-TLS point of view any problem may be interpreted as
a perturbed problem of the 1st class with the special singular values distribution
(3.11). This approach can be used as a relatively simple and useful regularization
technique see, e.g., [88, 17] (for d = 1) and also [84, Algorithm and comments in
§3.6.1, pp. 87–90].

On the other hand, it may be reasonable to expect that some information, which
was originally contained in the problem [ B |A ], is lost in the nongeneric solution,
which may yield some troubles. See also Example 6.1 in Chapter 6 for illustration
of such “loss-of-information”.

Remark 3.6. In whole this section κ is the smallest integer satisfying conditions
(i) and (ii) in the beginning of this section, equivalently, the integer returned by
Algorithm 3.1. However, in Lemmas 3.11 and 3.12 κ can be substituted by any
integer κ̃ (not necessarily the smallest) satisfying both these conditions (i), (ii).
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Chapter 4

SVD-based data reduction in
AX ≈ B

The SVD-based reduction given by C. C. Paige and Z. Strakoš in [64], described also
in Chapter 1, yields for a problem with the single right-hand side the core problem.

In this chapter we extend such reduction to problems with multiple right-hand
sides. We also investigate properties of the resulting reduced subproblem.

4.1 Introduction

Consider a general orthogonally invariant approximation problem (2.1), where, con-
sistently with the right-hand side case, AT B �= 0. Since the problem is orthogonally
invariant, it can be transformed into

(PT AQ ) (QT X R ) ≈ (PT B R ) , (4.1)

where P−1 = PT , Q−1 = QT , R−1 = RT . Equivalently (2.2) becomes(
PT
[

B A
] [ R 0

0 Q

]) ([
RT 0
0 QT

] [ − Id

X

]
R

)
≈ 0 . (4.2)

In this chapter we construct a transformation of the form (4.1) which transforms
the original data [ B |A ] into the block form

PT
[

B A
] [ R 0

0 Q

]
=
[

PT B R PT AQ
]

≡
[

B1 0 A11 0
0 0 0 A22

] (4.3)

where B1 and A11 are of minimal dimensions and all irrelevant and redundant
information in (4.3) is thus moved into the block A22; the proof of minimality is
given further in the text, in Chapter 6.

4.2 Algorithm of the reduction

The transformation is realized in four consequent steps:

(i) Preprocessing of the right-hand side. Here linearly dependent columns are
removed from the right-hand side B, see Section 4.2.1.
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(ii) Transformation of the system matrix. Here the matrix A is transformed to
diagonal form, see Section 4.2.2.

(iii) Transformation of the right-hand side. Here the right-hand side is transformed
to introduce as many zeros as possible, see Section 4.2.3.

(iv) Final permutation. Here the rows and columns of the extended matrix are
permuted to make the block structure visible, see Section 4.2.4.

4.2.1 Preprocessing of the right-hand side

Consider the SVD of B, d̄ ≡ rank (B) ≤ min {m , d },
B = S Θ WT , S ∈ R

m×d̄ , Θ ∈ R
d̄×d , W ∈ R

d×d , (4.4)

= �
�

0m

d d̄ d d

d

B S Θ WT

where S has mutually orthonormal columns, Θ is of full row rank, and W−1 =
WT . In the case that d > d̄ = rank (B), the right-hand side B contains linearly
dependent columns representing redundant information that can be removed from
the problem (2.1).

Using the orthogonal matrix W the problem (2.1) transforms to

AX̃ ≈ B̃ , (4.5)

where X̃ ≡ X W , B̃ ≡ B W = S Θ. Define

B̃ ≡ [ C 0
] ∈ R

m×d , C ∈ R
m×d̄ ,

X̃ ≡ [ Y Z
] ∈ R

n×d , Y ∈ R
n×d̄

(4.6)

(if d = d̄, then B̃ ≡ C, X̃ ≡ Y , and Z is nonexistent). Equivalently (2.2) becomes

[
B̃ A

] [ −Id

X̃

]
=
[

C 0 A
] ⎡⎣ −Id̄ 0

0 −Id−d̄

Y Z

⎤
⎦

=
[

AY − C AZ − 0
] ≈ 0 .

(4.7)

Thus the original problem is split into two subproblems

AY ≈ C and AZ ≈ 0 .

As in the single right-hand side case, we consider Z ≡ 0. A nonzero Z would not
increase the quality of approximation; it can only increase the norm of the solution.
With Z ≡ 0, only the subproblem AY ≈ C has to be solved. For this reason the
rest of the reduction algorithm considers the approximation problem

AY ≈ C , A ∈ R
m×n , Y ∈ R

n×d̄ , C ∈ R
m×d̄ , (4.8)

≈A Y Cm

n d̄ d̄

m
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or, equivalently, [
C A

] [ − Id̄

Y

]
≈ 0 , (4.9)

where C is of full column rank. Moreover, as follows from (4.4), C has mutually
orthogonal columns.

4.2.2 Transformation of the system matrix

In this section we use the SVD of A to transform the matrix to diagonal form.
Consider the SVD (2.4) of A, r ≡ rank (A) ≤ min {m , n },

A = U ′ Σ′ V ′T , U ′ ∈ R
m×m , Σ′ ∈ R

m×n , V ′ ∈ R
n×n , (4.10)

= �
�

0 0

0m

n m n n

n

A U ′ Σ′ V ′T

where (U ′)−1 = (U ′)T , (V ′)−1 = (V ′)T . Consider that A has k distinct nonzero
singular values

ς ′1 > ς ′2 > . . . > ς ′k > 0 , (4.11)

with multiplicities mj , j = 1 , . . . , k (obviously
∑k

j=1 mj = r), i.e.,

Σ′ = diag ( ς ′1 Im1 , ς ′2 Im2 , . . . , ς ′k Imk
, 0 ) .

Using orthogonal matrices U ′, V ′, the problem (4.8) transforms to

Σ′ Ỹ ≈ C̃ , (4.12)

where Ỹ ≡ (V ′)T Y , C̃ ≡ (U ′)T C. Equivalently, (4.9) becomes(
U ′T [ C A

] [ Id̄ 0
0 V ′

]) ([
Id̄ 0
0 V ′T

] [ −Id̄

Y

])

=
[

C̃ Σ′ ] [ −Id̄

Ỹ

]
≈ 0 .

(4.13)

The system matrix in (4.12)–(4.13) has diagonal form, possibly containing zero rows
and columns.

4.2.3 Transformation of the right-hand side

In order to obtain the required block structure (4.3) we seek to transform the
right-hand side C̃, while maintaining the diagonal form of the matrix Σ′. Consider
horizontal splitting of C̃ with respect to the multiplicities of the singular values of
the system matrix A

C̃ =
[

C̃T
1 C̃T

2 . . . C̃T
k C̃T

k+1

]T
,
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where C̃j ∈ Rmj×d̄, j = 1 , . . . , k , k + 1, and mk+1 ≡ m − r is the dimension of
the null space N (AT ). For each C̃j denote rj ≡ rank (C̃j) ≤ min {mj , d̄ } and
consider the SVD

C̃j = Sj Θj WT
j , Sj ∈ R

mj×mj , Θj ∈ R
mj×rj , Wj ∈ R

d̄×rj , (4.14)

=
�

�
0

mj

d̄ mj rj d̄

rj

C̃j Sj Θj WT
j

where S−1
j = ST

j , Θj is of full column rank, and Wj has mutually orthonormal
columns, j = 1 , . . . , k , k + 1. Consider the orthogonal block diagonal matrices

G ≡ diag (S1 , S2 , . . . , Sk , Sk+1 ) ∈ R
m×m ,

H ≡ diag (S1 , S2 , . . . , Sk , In−r ) ∈ R
n×n .

(4.15)

Using the orthogonal matrices G, H , the problem (4.12) transforms to

Σ′ (HT Ỹ ) ≈ (GT C̃ ) , (4.16)

because Σ′ = GT Σ′ H . Equivalently, (4.13) becomes

(
GT
[

C̃ Σ′ ] [ Id̄ 0
0 H

]) ([
Id̄ 0
0 HT

] [ − Id̄

Ỹ

])

=
[

GT C̃ Σ′ ] [ − Id̄

HT Ỹ

]
≈ 0 .

(4.17)

The extended system matrix from (4.17) has the form

[
GT C̃ Σ′ ] =

⎡
⎢⎢⎢⎢⎢⎣

Θ1 WT
1 ς ′1 Im1

Θ2 WT
2 ς ′2 Im2

...
. . . 0

Θk WT
k ς ′k Imk

Θk+1 WT
k+1 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (4.18)

If mj > rj , for any j = 1 , . . . , k , k + 1, then the block ST
j C̃j = Θj WT

j

contains zero rows, see (4.14). Therefore it is useful to denote

ST
j C̃j = Θj WT

j ≡
[

Dj

0

]
, Dj ∈ R

rj×d̄ , j = 1 , . . . , k , k + 1 (4.19)

(if rj = mj , then Θj WT
j ≡ Dj ; on the other hand, if rj = 0, then the block

Dj is nonexistent). In any case, Dj is of full row rank. Moreover, it has mutually
orthogonal rows. Our aim is to remove the zero rows from (4.19) to the bottom
part of the extended matrix (4.18), while maintaining the block diagonal form of
the system matrix. This can be done by the following permutation.
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4.2.4 Final permutation

Consider the permutation matrices

ΠL ≡
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir1

Im1−r1

Ir2

Im2−r2

. . .

. . .

Irk

Imk−rk

Irk+1

Imk+1−rk+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)

and

ΠR ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir1

Im1−r1

Ir2

Im2−r2

. . .

. . .

Irk

Imk−rk

In−r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.21)

where ΠL ∈ Rm×m, ΠR ∈ Rn×n. If rj ≡ mj , then the block Imj−rj and the
corresponding row and column are nonexistent; if rj = 0, then the block Irj and
the corresponding row and column are nonexistent, j = 1 , . . . , k , k + 1.

Multiplication of the extended matrix (4.18) by the matrix ΠT
L from the left

permutes the rows of the extended matrix such that the block rows beginning with
Dj , see (4.18) and (4.19), are permuted up, while the block rows beginning with
zero blocks are permuted down. Similarly, multiplication of the extended matrix
(4.18) by the matrix diag ( Id̄ , ΠR ) from the right permutes its block columns in
such a way that the block columns corresponding to the block rows permuted down
are now permuted to the right, while the other block columns are assembled to the
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left. Finally, the following block structured extended matrix is obtained

ΠT
L

⎡
⎢⎢⎢⎣

Θ1 WT
1 ς ′1 Im1

...
. . . 0

Θk WT
k ς ′k Imk

Θk+1 WT
k+1 0 0

⎤
⎥⎥⎥⎦
[

Id̄ 0
0 ΠR

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 ς ′1 Ir1

...
. . . 0 0

Dk ς ′k Irk

Dk+1 0 0 0

0 ς ′1 Im1−r1

... 0
. . . 0

0 ς ′k Imk−rk

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡
[

B1 A11 0
0 0 A22

]
.

(4.22)

The described transformation can be summarized as follows.

4.3 Summary

Consider a general orthogonally invariant approximation problem (2.1). Further
consider the SVD decompositions defined in (4.4), (4.10), (4.14), the orthogonal
matrices G, H given by (4.15), and the permutation matrices ΠL, ΠR given by
(4.20), (4.21). Denote

P ≡ U ′ GΠL and Q ≡ V ′ H ΠR , (4.23)

obviously P−1 = PT , Q−1 = QT . Then the transformation

PT
[

B A
] [ W 0

0 Q

]
=
[

B1 0 A11 0
0 0 0 A22

]
, (4.24)

is obviously of the form (4.3). Matrices B1, A11, and A22 are given by (4.22), recall
that

[
B1 A11

]
=

⎡
⎢⎢⎢⎣

D1 ς ′1 Ir1

...
. . .

Dk ς ′k Irk

Dk+1 0

⎤
⎥⎥⎥⎦ ∈ R

m̄×(n̄+d̄) , (4.25)

where

m̄ ≡
(∑k+1

j=1
rj

)
, n̄ ≡

(∑k

j=1
rj

)
.

The corresponding transformation of the matrix of unknowns in (4.2) is given by

[
W 0
0 Q

]T [ − Id

X

]
W =

⎡
⎢⎢⎣

− Id̄ 0
0 − Id−d̄

X1 Z1

X2 Z2

⎤
⎥⎥⎦ , (4.26)
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where the horizontal splitting [X1
X2

] and [Z1
Z2

] corresponds to the vertical splitting
of the system matrix in (4.24). By insertion of (4.24) and (4.26) into the formula
(4.2), the problem (2.2) is equivalently rewritten in the form[

A11 X1 − B1 A11 Z1

A22 X2 A22 Z2

]
≈ 0 . (4.27)

Analogously to the argumentation above, in the approximation problems

A11 Z1 ≈ 0 , A22 X2 ≈ 0 , A22 Z2 ≈ 0

it is natural to consider X2 ≡ 0, Z1 ≡ 0, Z2 ≡ 0, and only the remaining
subproblem, called reduced problem, has to be solved

A11 X1 ≈ B1 , A11 ∈ R
m̄×n̄ , X1 ∈ R

n̄×d̄ , B1 ∈ R
m̄×d̄ . (4.28)

Equivalently, [
B1 A11

] [ −Id̄

X1

]
≈ 0 . (4.29)

The solution of the original problem is given by

X ≡ Q

[
X1 0
0 0

]
WT , (4.30)

and it is fully determined by the solution of the reduced problem. Consequently, the
reduced problem contains all information sufficient for solving the original problem.

4.4 Properties of the subproblem [ B1 |A11 ]

This section focuses on the properties of the problem (4.28), (4.29), with the ex-
tended matrix given by (4.25). Using (4.11), denote U ′

j ∈ Rm̄×rj the matrix of
columns representing a basis of the left singular vectors subspace of A11 corre-
sponding to ς ′j , j = 1 , . . . , k, and U ′

k+1 ∈ Rm̄×rk+1 the matrix of columns repre-
senting a basis of the null space of AT

11 (i.e. R (A11) = R (U ′
1) ⊕ . . . ⊕ R (U ′

k) and
N (AT

11) = R (U ′
k+1)). Obviously, the reduced problem has the following proper-

ties:

(G1) The matrix A11 ∈ Rm̄×n̄ is of full column rank equal to n̄ ≤ m̄.

(G2) The matrix B1 ∈ Rm̄×d̄ is of full column rank equal to d̄ ≤ m̄.

(G3) The matrices (U ′
j)

T
B1 ≡ Dj ∈ Rrj×d̄ are of full row rank equal to rj ≤ d̄,

for j = 1 , . . . , k + 1.

It can be easily proved that properties (G1)–(G3) imply:

(G4) The extended matrix [B1 |A11 ] ∈ Rm̄×(n̄+d̄) is of full row rank equal to m̄ ≡
n̄ + rk+1 ≤ n̄ + d̄.

(G5) The matrix A11 does not have any zero singular value. Its singular values
have multiplicities at most d̄.

Because m̄−n̄ = rk+1 ≤ d̄, the matrix A11 has at most d̄ extra rows. Consequently
the dimensions of the reduced problem satisfy the inequality

max { n̄ , d̄ } ≤ m̄ ≤ n̄ + d̄ .
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It can be simply verified that the properties (G1)–(G5) of the reduced problem
are invariant with respect to an orthogonal transformation of the form

P̂T
[

B1 A11

] [ R̂ 0
0 Q̂

]
≡ [ B̂1 Â11

]
, (4.31)

where P̂−1 = P̂T , Q̂−1 = Q̂T , R̂−1 = R̂T . Thus we call them general properties.
Further, in Chapter 6, it will be shown that the dimensions of the reduced problem
(4.25) are minimal (they can not be reduced more), and that (G1)–(G5) ensure this
minimality of dimensions.

Remark 4.1. Instead of the SVD preprocessing (4.4) of the right-hand side B (see
Section 4.2.1) one can use the LQ decomposition (producing a matrix with m by
d̄ lower triangular block in the column echelon form and an orthogonal matrix).
Similarly, in the transformation of the right-hand side (see Section 4.2.3) instead of
the SVD decompositions (4.14) of C̃j one can use QR decompositions (producing a
matrix with rj by d̄ upper triangular block in the row echelon form and an orthogonal
matrix), j = 1 , . . . , k + 1.

It is not difficult to show that it this way the modified algorithm of reduction
produces a subproblem having the same dimension as (4.25) which can be obtained
from (4.25) by an orthogonal transformation of the form (4.31).

In contrast to the general properties, the subproblem [B1 |A11 ] determined by
the algorithm described above (in Sections 4.2, 4.3), see (4.25), has some properties
which are not invariant with respect to the orthogonal transformation of the form
(4.31). We call them special properties:

(S1) The matrix A11 ∈ Rm̄×n̄ is diagonal with positive components ordered in
nonincreasing sequence on the main diagonal.

(S2) The matrix B1 ∈ R
m̄×d̄ has mutually orthogonal nonzero columns, ordered in

a nonincreasing sequence with respect to their norms.

(S3) The matrices (U ′
j)

T
B1 ≡ Dj ∈ Rrj×d̄ have mutually orthogonal nonzero

rows ordered in a nonincreasing sequence with respect to their norms, for
j = 1 , . . . , k + 1.

From (S1) and (S3) it follows that the blocks of rows [Dj || 0 . . . 0 | ς ′j Irj | 0 . . . 0 ]
of [ B1 |A11 ], j = 1 , . . . , k, have mutually orthogonal rows.

Further, from the relationship between the solutions of reduced and original
problems (4.30) it follows that the reduced problem contains all information suf-
ficient for solving the original problem. (In Chapter 6, it will be shown that the
problem contains only necessary information for solving the original problem. Note
that for the problem with single right-hand side, i.e. d = 1, the reduction described
above gives the core problem [64].)

Remark 4.2. From (4.24) it follows that the SVD of A can be expressed by the
SVDs of A11 and A22, and, similarly, the SVD of [ B |A ] can be expressed by the
SVDs of [ B1 |A11 ] and A22.

Remark 4.3. Note that d̄ can be smaller, equal, or larger than n̄. For example,
d̄ > n̄ in the reduced problem

[
B1 A11

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

♣ ς ′1
♣ ς ′2

♣ ς ′3
♣

♣
♣

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.32)
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where ♣ denotes nonzero components. An example with d̄ = n̄ can be obtained
easily, e.g., from (4.32) by removing the last (4th) column of B1 and the last (6th)
row of [ B1 |A11 ]. (The third possibility d̄ < n̄ arises, e.g., in problems with single
right-hand side b having nonzero projections onto at least two left singular vector
spaces corresponding to distinct nonzero singular values of A, see [64].)

Consequently, if rj < d̄, then the matrix (U ′
j)

T
B1 ≡ Dj has linearly dependent

columns, j = 1 , . . . , k + 1. All the matrices Dj, j = 1 , . . . , k + 1, may have
linearly dependent columns, see (4.32).
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Chapter 5

Band generalization of the
Golub-Kahan
bidiagonalization

The Golub-Kahan bidiagonalization algorithm and its relationship to the Lanczos
process and Jacobi matrices plays an important role in the core problem theory for
the single right-hand sides problems. Here we present and develop further a gener-
alization of the Golub-Kahan algorithm, proposed for the purpose of the reduction to
the core problem by Å. Björck, [8, 9, 10], D. M. Sima and S. Van Huffel, [73, 74].

A relationship between the generalized Golub-Kahan algorithm and the band for-
mulation of the block Lanczos process allows us to analyze properties of the reduced
problem. This chapter introduces so called generalized Jacobi matrices, which are
useful for analysis of the reduction process. The whole chapter assumes exact arith-
metic.

5.1 Introduction

Consider a general orthogonally invariant approximation problem (2.1), where, con-
sistently with the single right-hand side case, AT B �= 0. With no loss of generality,
see Section 4.2.1, we assume that B is of full column rank. If the right-hand side
B does not have full column rank, then use the SVD B = UB ΣB V T

B of the form
(4.4), to obtain the equivalent problem with the full column rank right-hand side
B̃ ∈ Rm×d̃, [ B̃ | 0 ] ≡ UB ΣB, d̃ ≡ rank(B), see also (4.4), (4.8) in Section 4.2.1.

= �
�

0m

d d̃ d d

d

B UB ΣB V T
B

The SVD-preprocessed right-hand side matrix B̃ has, moreover, mutually orthogonal
columns sorted in such a way that their norm is nonincreasing. The preprocessing
may be suitable also in the case when B is of full column rank. When started with
such SVD-preprocessed right-hand side, the band algorithm, described in the fur-
ther text in this chapter, yields a reduced problem with the right-hand side having

69



70 CHAPTER 5. BAND GENERALIZATION OF THE GOLUB-KAHAN ...

nonzero components only on the main diagonal. Alternatively, the LQ decomposi-
tion B = [ B̂ | 0 ] Q̂T , B̂ ∈ Rm×d̃ yields an equivalent problem with a full column
rank right-hand side B̂. The LQ-preprocessed right-hand side B̂ is in the lower
triangular (column echelon) form.

Remark 5.1. In this section we frequently use the following symbolic notation for
components of matrices:

(i) ♣ denotes a nonzero component, ♣ �= 0,

(ii) ♥ denotes a component which may be zero as well as nonzero,

(iii) all other entries are equal to zero.

5.2 Description of the band reduction algorithm

The band generalization of the partial Golub-Kahan iterative bidiagonalization al-
gorithm, which is described in this section, and its application for the data decom-
position in approximation problems AX ≈ B with multiple right-hand sides was
first proposed and published in a series of presentations by Åke Björck [8, 9, 10],
and by Diana M. Sima in [73], [74, Section 2.3.3, pp. 31–39]. Here we successively
derive the algorithm, for the complete description of the algorithm see also the PhD
thesis of Diana M. Sima [74, Algorithm 2.4, p. 38].

Assume the right-hand side B ∈ Rm×d of full column rank (i.e. m ≥ d). In
order to simplify the notation, in the rest of this chapter d denotes the number
of columns of B as well as the rank of B, according to the previous assumption.
Consider the QR decomposition of B in the form

B = Q R =
[

Q1 Q2

] [ R1

0

]
= Q1 R1 , (5.1)

where Q ∈ Rm×m is an orthogonal matrix; if m = d Q2 is nonexistent. Here

R1 =

⎡
⎢⎢⎢⎢⎢⎣

γ1 β1,2 β1,3 · · · β1,d

γ2 β2,3 · · · β2,d

. . .
. . .

...
γd−1 βd−1,d

γd

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

d×d , (5.2)

is a square upper triangular matrix with a positive diagonal, γj > 0, j = 1 , . . . , d.
Clearly, for the SVD-preprocessed right-hand side B̃ ≡ UB ΣB the matrix R1 is
diagonal with nonzero singular values of B on the main diagonal, and Q1 ≡ UB

contains the corresponding left singular vectors.
We will orthogonally transform the extended matrix [B |A ] into the matrix with

a banded left upper triangular block, such that

ST
k

[
B AWk

] ≡ [ R Lk

]
(5.3)
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where S−1
k = ST

k , W−1
k = WT

k ,

Lk ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

β2,d+1 α2

... β3,d+2 α3

βd,d+1

... β4,d+3
. . .

γd+1 βd+1,d+2

...
. . . αk

γd+2 βd+2,d+3 βk+1,d+k ♥ · · · ♥
γd+3

. . .
... ♥ · · · ♥

. . . βd+k−1,d+k

...
...

γd+k ♥ · · · ♥
♥ · · · ♥
...

. . .
...

♥ · · · ♥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.4)

and for the given k, 0 ≤ k ≤ min {n , m − d }, the components αj and γd+j are
positive, i.e., αj > 0 and γd+j > 0, j = 1 , . . . , k, if k > 0. Here we assume the
existence of k ≥ 1 with the given property, and derive the iterative representation
of the partial decomposition above. The situation k = 0 will be discussed later.
for some k, 0 ≤ k ≤ min {n , m − d }. The orthogonal matrices Sk ∈ Rm×m

and Wk ∈ Rn×n can be determined, e.g., as products of elementary Householder
transformation matrices. Obviously, the first d columns of the matrices Sk, from
(5.3)–(5.4), are given by Q1 from the QR decomposition (5.1)–(5.2). Consequently,
Sk = Q diag ( Id , Ŝk ) = [ Q1 |Q2 Ŝk ], where Ŝk ∈ R(m−d)×(m−d) is orthogonal.

Denote sj and wj the jth columns of the matrices Sk and Wk, respectively. Since
ST

k AWk = Lk where Sk, Wk are orthogonal matrices, equating the corresponding
columns in AWk = Sk Lk and AT Sk = Wk LT

k gives

Awj =
[

sj , sj+1 , . . . , sj+d−1 , sj+d

]
⎡
⎢⎢⎢⎢⎢⎣

αj

βj+1,d+j

...
βj+d−1,d+j

γd+j

⎤
⎥⎥⎥⎥⎥⎦ ,

and

AT sj =
[

wj−d , wj−d+1 , . . . , wj−1 , wj

]
⎡
⎢⎢⎢⎢⎢⎣

γj

βj,j+1

...
βj,j+d−1

αj

⎤
⎥⎥⎥⎥⎥⎦ ,

for j = 1 , 2 , . . . , k, where, for convenience, we set wj ≡ 0 for j ≤ 0. Rearranging
the previous equations gives, together with the orthogonality relations ST

k Sk = Im,
WT

k Wk = In, the recurrence formulas for computing the principal banded (d + k)
by k block of Lk, and the columns sd+j, wj , j = 1 , 2 , . . . , k, of Sk and Wk,
respectively. Given the vectors s1 , . . . , sd (columns of Q1) and the matrix R, see
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(5.1)–(5.2), w−d+1 = . . . = w0 ≡ 0, for j = 1 , 2 , . . . , k

wj αj ≡ AT sj − wj−d γj −
(

d−1∑
i=1

wj−d+i βj,j+i

)
, (5.5)

for i = 1 , . . . , d − 1 , βj+i,d+j ≡ sT
j+i Awj , (5.6)

sd+j γd+j ≡ Awj − sj αj −
(

d−1∑
i=1

sj+i βj+i,d+j

)
. (5.7)

Coefficients αj and γj+d are determined by the normalization conditions ‖wj‖ =
1 and ‖sj+d‖ = 1, respectively, and coefficients βj+i,j+d are determined by the
orthogonality relations sT

d+j sj+i = 0, i = 1 , . . . , d − 1, for j = 1 , 2 , . . . , k.
Note that the described algorithm (5.5)–(5.7) produces the principal upper left

block of Lk columnwisely. For d = 1 (in the single right-hand side case) the
relations (5.6) vanish, and the algorithm (5.5)–(5.7) reduces to the Golub-Kahan
iterative bidiagonalization.

Now we focus on the situation with k = 0. This happens in two different cases,
either α1 or γd+1 (or both) in (5.4) are equal to zero; possibly, if m = d, then γd+1

does not exist. Recall that the QR decomposition (5.1)–(5.2) of the right-hand
side B transforms the original problem [ B |A ] to the new problem QT [ B |A ] =
[ R |QT A ].

The first case is provided by the fact that the first row of the matrix QT A is
equal to zero, i.e. eT

1 QT A = 0. Then we try to construct a Householder trans-
formation matrix producing positive α1 component in the second row. As before,
such transformation exists only if eT

2 QT A �= 0, otherwise we try to construct
a transformation producing positive α1 in the third row, etc. The assumption
AT B = AT Q R = (QT A)T R �= 0, where R = [ RT

1 | 0 ]T and R1 ∈ Rd×d, guar-
antees that at least one of eT

j QT A �= 0 for j = 1 , . . . , d (at least one of the first d

rows of QT A is nonzero). Then the α1 component corresponds to the first nonzero
row in the matrix QT A.

The second case, γd+1 = 0 in (5.4), is analogous. If m > d, then the second
case is provided by the fact that the first column of QT A ends with a zero subvector
of length m − d. Then we try to construct a Householder transformation matrix
producing positive γd+1 in the second column of QT A. Contrary to the first case the
matrix QT A may not contain a column which ends with nonzero m − d subvector
and thus γd+1 may not exists. If m = d, then the situation is obvious.

In all above described cases providing the situation with k = 0 can be obtained
formulas analogous to (5.5)–(5.7) with shorter recurrences, by equating the corre-
sponding columns. For a further description see the next section which discusses
this phenomenon in more generally.

5.2.1 Deflation

Let occur the unfortunate situation when the matrix (5.4) does not exist, i.e. k = 0;
or let l be the first index such that (5.5) or (5.7) becomes wl αl ≡ 0 or sd+l γd+l ≡ 0,
respectively. Then the algorithm described by equations (5.5)–(5.7) applied on A
breaks down in the 1st (if k = 0), or lth iteration. This occurs, e.g., for (5.7) when
the number of rows of the matrix A is reached, i.e. l = m− d+1 (generally it may
occur sooner). (Note that the number of columns of A can not be reached because
the algorithm (5.5)–(5.7) is designed columnwisely.)

The equation (5.5) reduces to wl αl = 0 if all entries of the lth row of Ll−1 to the
right from βl,d+l−1 are zero. Then obviously, there is a Householder transformation
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matrix Hl such that

ST
l−1

[
B AWl−1 Hl

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

. . . αl−1

. . . βl,d+l−1 0 · · · 0
βl+1,d+l−1 αl · · · 0

... ♥ · · · ♥
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.8)

and we speak about upper deflation. For lower deflation the situation is analogous.
Clearly, the upper and lower deflations can occur repeatedly. In the finite precision
computations this phenomenon is called exact deflation, see, e.g., [1]. Each deflation
reduces the current width of the band by one. After d deflations it is reduced to
one, and the process terminates.

Consequently the orthogonal matrices S ∈ Rm×m and W ∈ Rn×n can be deter-
mined, e.g., as products of elementary Householder transformation matrices such
that, ST [ B |AW ] ≡ [ R |L ], ST AW ≡ L have block diagonal form with a lead-
ing banded block. For d = 3 this is illustrated on the following scheme:

ST
[

B AW
] ≡

[
B̃1 Ã11 0
0 0 Ã22

]
(5.9)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

♣ ♥ ♥ ♣
♣ ♥ ♥ ♣

♣ ♥ ♥ ♣
♣ ♥ ♥ ♣

0 ♣ ♥ ♣
♣ ♥ 0

♣ ♣
♣ ♣

0 ♥ · · · ♥
...

. . .
...

♥ · · · ♥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

upper deflation

�� ��

�

lower deflations

�� ��

�

���

Thus this transformation reveals a banded subproblem with the extended system
matrix [ B̃1 | Ã11 ].

Now we describe how to include deflations in (5.5)–(5.7). Obviously, deflation
reduces the lengths of the recurrences in (5.5), (5.7), and the number of computed
coefficients in (5.6), see also [9, 10, 74].

The upper deflations can be handled simply. Let l be the first index for which
the deflation occurs, and let it occur as upper deflation. Then the formula for
computing αl and wl is given by equating the (l + 1)st (instead of the lth) columns
of AT S = W LT . Formulas (5.5)–(5.7) are modified for j = l , . . . , until another
deflation occurs such that

wj αj ≡ AT sj+1 − wj−d+1 γj −
(

d−1∑
i=2

wj−d+i βj+1,j+i

)
, (5.10)

for i = 2 , . . . , d − 1 , βj+i,d+j ≡ sT
j+i Awj , (5.11)

sd+j γd+j ≡ Awj − sj+1 αj −
(

d−1∑
i=2

sj+i βj+i,d+j

)
. (5.12)
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Consequently, upper deflation in the lth step reduces by one the length of both
recurrences and the number of computed coefficients in the algorithm for all j ≥ l.
Any other upper deflation requires analogous modification – decreasing of the length
of recurrences.

Now, let l be the first index for which the deflation occurs, and let it occurs as
lower deflation. Then the formula for computing γd+l and sd+l is given by equating
the (l + 1)st (instead of the lth) columns of AW = S L. Unfortunately, here the
modification of the recurrent formulas (5.5)–(5.7) is more complicated. The lower
deflation in the lth step reduces by one the number of computed coefficients in (5.6)
and the length of the recurrence in (5.7), for j ≥ l+1. The length of the recurrence
in (5.5) is reduced later – if another deflation does not occur in the meanwhile, then
it is reduced after d steps, for j ≥ d + l. This is a consequence of the fact that
the algorithm is designed columnwisely (the length of the recurrence in (5.5) for
computing αj depends on the number of β components in the corresponding row).

Denote S1:j ≡ [ s1 , s2 , . . . , sj ], W1:j ≡ [ w1 , w2 , . . . , wj ], and lij ≡ eT
i L ej.

The banded algorithm written in pseudocode follows; see also [74, Algorithm 2.4,
p. 38].

Algorithm 5.1 (Band algorithm).

00: compute QR decomposition B = Q1 R1

01: set S1:d = Q1 , W∅ = [] , L = []
02: set j = 1 , k = d , cU = 0 , cL = 0

/* computation of α , w , handling the upper deflation */

03: set p = AT sj+cU − (
∑j−1

i=1 wi lj+cU ,i)
04: if p = 0 , then set cU = cU + 1 , goto line 14

05: set αj = ‖p‖ , wj = p / αj , W1:j = [ W1:j−1 |wj ]

/* computation of β , inner orthogonalization */

06: for i = j + 1 + cU : j + d − 1 − cL , set βi,j+d = sT
i Awj

07: set L = [ L | [ 01,j−1+cU , αj , βj+1+cU ,j+d , . . . , βj+d−1−cL,j+d ]T ]

/* computation of γ , s , handling the lower deflation */

08: set p = Awj − (
∑k

i=1 si li,j)
09: if p = 0 , then set cL = cL + 1 , goto line 13

10: set k = k + 1
11: set γk = ‖p‖ , sk = p / γk , S1:k = [ S1:k−1 | sk ]
12: set L = [ LT | [ 01,j−1 , γk ]T ]T

13: set j = j + 1

14: if cU + cL < d , then goto line 03

15: set m̃ = k , ñ = j − 1 , B̃1 = [ RT
1 | 0d,m̃−d ]T , Ã11 = L

16: return S1:m̃ , W1:ñ , B̃1 , Ã11

This algorithm stops if cU + cL = d (line 14) , where cU and cL are counters of
upper and lower deflations, respectively. Thus it stops immediately after the dth
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deflation. If j (the number of columns) or k (the number of rows) of the computed
matrix L becomes equal to n or m, respectively, sooner than d deflations occur, then
the algorithm stays in the cycle [03, 04, 14, 03, ...], or [03:09, 13, 14, 03:09, ...],
respectively, until cU + cL < d (line 14).

Remark 5.2. Because it is difficult to describe the length of the recurrences in the
Band algorithm 5.1, as in (5.5)–(5.7) or (5.10)–(5.12), in a simple way (see the
discussion about lower deflation above) we use all the previously computed vectors
in the description, with understanding that the matrix L has zero entries outside
the band.

The Algorithm 5.1 returns the following rectangular matrices: S1:m̃ ∈ R
m×m̃,

ST
1:m̃ S1:m̃ = Im̃, where m̃ > d and S1:d ≡ Q1 represents the first d columns

of Q, see (5.1); W1:ñ ∈ Rn×ñ, WT
1:ñ W1:ñ = Iñ; B̃1 containing the upper triangular

block R1, see (5.1)–(5.2), and the banded matrix Ã11, such that

ST
1:m̃

[
B AW1:ñ

]
=
[

B̃1 Ã11

] ∈ R
m̃×(ñ+d) , (5.13)

with αi > 0, i = 1 , . . . , ñ, and γj > 0, j = 1 , . . . , m̃, see (5.2), (5.3), (5.5)–
(5.7), etc. As an illustration see the following reduced problem:

[
B̃1 Ã11

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 β12 β13 α1

γ2 β23 β24 α2

γ3 β34 β35 α3

γ4 β45 β46 α4

γ5 β57 α5

γ6 β68

γ7 α6

γ8 α7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 5.3 (Golub-Kahan bidiagonalization). For d = 1, Algorithm 5.1 reduces
to the (partial) Golub-Kahan iterative bidiagonalization algorithm given in [27], see
also [57, 59, 41, 42]. (The adjective partial means that it stops when the first
bidiagonal component is equal to zero.)

Remark 5.4 (Block Lanczos algorithm). Let the Band algorithm 5.1 applied on A
started from the full column rank B return S1:m̃, W1:ñ, and B̃1, Ã11. Obviously B̃1

is fully determined by the QR decomposition (5.2). A suitable banded formulation
of the block Lanczos algorithm, see [69, 13, 80, 30], applied to AAT started with
the orthonormal basis Q1 of B (5.2) yields

ST
1:m̃ (AAT )S1:m̃ = Ã11 ÃT

11 .

Similarly the block Lanczos algorithm applied to AT A started with an orthonormal
basis of AT B yields

WT
1:ñ (AT A )W1:ñ = ÃT

11 Ã11 .

Thus Algorithm 5.1 is fully determined by the block Lanczos applied simultane-
ously to AAT and AT A with starting vectors the orthonormal bases of B, AT B,
respectively; or one applied to the larger symmetric matrix [ 0

AT
A
0 ] with starting

vectors the orthonormal basis of [ B
0 ].

For the banded formulation of the block Lanczos algorithm called band Lanczos
algorithm see [69], [2, Section 4.6 and 7.10 (R. W. Freund, Band Lanczos Method)].
For some numerical aspects and implementation details of band Lanczos type meth-
ods (inexact deflation etc.) see [1].
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Remark 5.5 (Numerical aspects). In practical computations the newly computed
vectors wj and sj+d must be twice reorthogonalized against the corresponding pre-
viously computed vectors. It ensures that the lost of orthogonality among computed
vectors, i.e. ‖WT

1:ñ W1:ñ − Iñ ‖, ‖ST
1:m̃ S1:m̃ − Im̃ ‖, is comparable with the machine

precision. This follows from results for the Gram-Schmidt orthogonalization process,
see [22, 23].

Further, in an applicable implementation the decision when to deflate (lines 04,
09 in Algorithm 5.1) can not be based on the exact condition p = 0, see [20, 74].

As already mentioned, Algorithm5.1 performs a problem transformation of the
form (4.24). The algorithm yields the subproblem

Ã11 X̃1 ≈ B̃1 , Ã11 ∈ R
m̃×ñ , X̃1 ∈ R

ñ×d , B̃1 ∈ R
m̃×d , (5.14)

or, equivalently, [
B̃1 Ã11

] [ −Id

X̃1

]
≈ 0 , (5.15)

which contains all information sufficient for solving the original problem, analo-
gously to the argumentation in the previous chapter, see Section 4.3. The solution
of the original problem is given by

X ≡ W1:ñ X̃1 .

Properties of the subproblem (5.14) will be discussed in the several next sections.

Remark 5.6. Note that the Krylov subspace methods and Lanczos-type algorithms
are often used for model reduction problems. A very instructive example of a similar
approach can be found in a model reduction application in modeling of electrical
circuits, see, e.g., [20, Chapter 5].

5.3 Basic properties of the subproblem [ B̃1 | Ã11 ]

In the rest of this chapter we prove that the reduced problem [ B̃1 | Ã11 ] obtained
by the band algorithm has properties (G1)–(G5), see Section 4.4.

For a given B, A (assuming with no loss of generality the full column rank of
B) Algorithm 5.1 produces the reduced problem Ã11 X̃1 ≈ B̃1, see (5.9), (5.13),
and (5.14), with the structure illustrated by the example

[
B̃1 Ã11

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 β12 β13 α1

γ2 β23 β24 α2

γ3 β34 β35 α3

γ4 β45 β46 α4

γ5 β57 α5

γ6 β68

γ7 α6

γ8 α7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.16)

where all αj > 0, γj > 0. Obviously, the reduced problem [ B̃1 | Ã11 ] has the
following properties:

(G1) The matrix Ã11 is of full column rank, rank (Ã11) = ñ ≤ m̃.

(G2) The matrix B̃1 is of full column rank (here by assumption).

(G4) The matrix [ B̃1 | Ã11 ] is of full row rank equal to m̃.
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The full column rank of B̃1 follows from the assumption that the right-hand side B
is of full column rank (in the general case the right-hand side must be preprocessed,
see Section 5.1 (or Section 4.2.1)). The other two assertions follow immediately from
the fact that the matrix Ã11 is in the lower triangular (column echelon) form with
nonzero columns, and the matrix [ B̃1 | Ã11 ] is in the upper triangular (row echelon)
form with nonzero rows.

Moreover, the vectors sj and wj computed by Algorithm 5.1 are the first columns
of the matrices S and W from (5.9), respectively, it follows from the relationship
to the block Lanczos algorithm see [28], see also [8, 9, 10]. By extending these sets
of vectors to full bases, we get the orthogonal matrices S ≡ [ S1:m̃ | sm̃+1 , . . . , sm ]
and W ≡ [ W1:ñ |wñ+1 , . . . , wn ] satisfying (5.9). We see that

(ST
1:m̃ A )W =

[
Ã11 0

]
,

so that the band algorithm gives an LQ decomposition of the matrix (ST
1:m̃ A ),

ensuring that Ã11 is of full column rank. Next we see that

ST
[

B AW1:ñ

]
=
[

B̃1 Ã11

0 0

]
,

so that the band algorithm gives a QR decomposition of the matrix [B |AW1:ñ ],
ensuring that [ B̃1 | Ã11 ] is of full row rank.

The original problem is decomposed into two independent subproblems, see
(5.9), where the second one is homogeneous (with zero right-hand side). Since
the problem is orthogonally invariant, the original problem [B |A ] is compatible,
i.e. R(B) ⊂ R(A), if and only if the subproblem [ B̃1 | Ã11 ] is compatible. Further,
in the compatible case the matrix Ã11 ∈ Rm̃×ñ must be square; it follows from
the facts that Ã11 is of full column rank, [ B̃1 | Ã11 ] is of full row rank, and thus
ñ = rank (Ã11) = rank ([ B̃1 | Ã11 ]) = m̃.

On the other hand, the extended matrix [ B̃1 | Ã11 ] is of full row rank, thus
the system matrix Ã11 can have at most ñ + d rows, i.e. m̃ ≤ ñ + d, which
happens when [ B̃1 | Ã11 ] is square. We call such problem fully incompatible and
it fulfill R (B̃1) ∩ R(Ã11) = {0} (this will be clarified in Chapter 6 through the
relationship to the SVD-based reduction).

One can see that each row of the matrix [ B̃1 | Ã11 ] contains at least one nonzero
(positive) component γj . The assumption B ∈ Rm×d being of full column rank
guarantees that [ B̃1 | Ã11 ] contains at least γj , j = 1 , . . . , d, components. Sim-
ilarly, each column of Ã11 contains at least one nonzero (positive) component αj .
The assumption AT B �= 0 guarantees that Ã11 contains at least α1 component in
the first d rows of Ã11 (see Section 5.2). Consequently, the first � rows of matrix
Ã11 can be zero, � < d. Finally, the matrix Ã11 may not contain γd+j components,
see the remark below.

Remark 5.7. For the particular compatible system having the special property
R(B) ≡ R(A) the band algorithm yields Ã11 which does not contain γj compo-
nents. From (5.9), together with the special property and the fact that Ã11 is square
in the compatible case, it follows that d = ñ = m̃. Thus in this special case B̃1 is
square upper triangular and Ã11 is square lower triangular and Ã11 does not contain
any γj.

5.4 Generalization of Jacobi matrices

Properties (G3) and (G5), see Section 4.4, are related with the singular values and
singular vector subspaces of [ B̃1 | Ã11 ]. Equivalently, these properties are related
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to the spectral properties of the symmetric positive semidefinite matrix

[
B̃1 Ã11

]T [
B̃1 Ã11

]
=
[

B̃T
1 B̃1 B̃T

1 Ã11

ÃT
11 B̃1 ÃT

11 Ã11

]
and of its positive definite diagonal blocks, as well as the symmetric positive definite
matrix [

B̃1 Ã11

] [
B̃1 Ã11

]T
= Ã11 ÃT

11 + B̃1 B̃T
1 ,

and both its positive semidefinite summands.

Now we introduce commonly used notation. For any given matrix T ∈ Rn×n

denote
bw (T ) ≡ max

i,j
{ |i − j| : ti,j ≡ eT

i T ej �= 0 } ≤ n − 1

the bandwidth. It will be convenient to consider the following classes of matrices.

Definition 5.1 (Proper band matrix). Let T ∈ Rn×n be a symmetric band ma-
trix with the bandwidth ρ ≡ bw (T ). When all components on its ρth sub- and
superdiagonal are nonzero, i.e., tij �= 0 when |i − j| = ρ, we call T a proper band
matrix.

An illustration of a proper band matrix is given below for ρ = 3:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥ ♥ ♥ ♣

♣ ♥ ♥ ♥ ♥ ♥
♣ ♥ ♥ ♥ ♥

♣ ♥ ♥ ♥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Recall that ♣ denotes a nonzero component, and ♥ denotes a component which
may be zero as well as nonzero.

Definition 5.2 (ρ-wedge-shaped matrix). Let T ∈ Rn×n be a symmetric band
matrix. Denote ν(j) the column index of the first nonzero component in the jth row
of T (using the symmetry of T gives that ν(j) denotes the row index of the first
nonzero component in the jth column, too). When there exists a positive integer ρ,
1 ≤ ρ < n, such that the sequence { j − ν(j) }n

j=ρ+1 is positive and nonincreasing,
we call T a ρ-wedge-shaped matrix.

An illustration of a ρ-wedge-shaped matrix with ρ = 3 is given below:

T =

♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥ ♥ ♥

♣ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥ ♥ ♣

♣ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥

♣ ♥ ♥ ♣
♣ ♥ ♣

♣ ♥ ♣
♣ ♥

a ρ-wedge-shaped matrix
contains proper band

matrices as submatrices

�
�

�
	

�

�
�	

�

;
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here ν(ρ + 1) ≡ ν(4) = 1, ν(5) = 2, ν(6) = 3, ν(7) = 5, etc., and the se-
quence { j − ν(j) }n

j=ρ+1 is ( 3, 3, 3, 2, 2, 2, 1, 1, 1 ), and it is obviously positive and
nonincreasing.

The definition of a ρ-wedge-shaped matrix does not require ν(ρ + 1) = 1. An
illustration of a matrix with ρ = 3 and ν(ρ + 1) = 2 is given below:

T =

♥ ♥ ♥
♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♣

♣ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥

♣ ♥ ♥ ♣
♣ ♥ ♣

♣ ♥

.

Further, an illustration of a matrix with ρ = 3 and ν(ρ + 1) = 3:

T =

♥ ♥ ♥
♥ ♥ ♥
♥ ♥ ♥ ♣

♣ ♥ ♣
♣ ♥ ♣

♣ ♥ ♣
♣ ♥ ♣

♣ ♥

.

Here it is worth to note that, if T ∈ Rn×n is a ρ-wedge-shaped matrix with ρ < n−1,
then it is (ρ+1)-wedge-shaped, too. Thus Definition 5.2 allows some nonuniqueness
in classification of these matrices, which is necessary due to the fact that the ♥
components may be nonzero as well as zero. We summarize some basic properties
of these matrices:

• If T ∈ Rn×n is a ρ-wedge-shaped matrix and ν(ρ+1) = 1, then the bandwidth
of T is equal to bw (T ) ≡ ρ.

• If T ∈ Rn×n is a ρ-wedge-shaped matrix and ν(ρ+1) > 1, then the bandwidth
of T is smaller than ρ. Moreover, the first � ≡ ν(ρ + 1) − 1 columns (and
rows) of a T can be zero; see the examples above recalling that ♥ may be
nonzero as well as zero.

The definition of ρ-wedge-shaped matrix requires positiveness of { j − ν(j) }n
j=ρ+1

sequence, and thus:

• The ρ-wedge-shaped matrix can not contain a 2 by 2 principal submatrix
which is diagonal.

All these particularities follow from the fact that Definition 5.2 is chosen to fit the
matrices returned by Algorithm 5.1. The relationship will be clarified in Lemma 5.1.
Further:

• The proper band matrix T is a special case of ρ-wedge-shaped matrix, with
ρ ≡ bw (T ), ν(ρ + 1) = 1, and constant sequence { j − ν(j) }n

j=ρ+1.

• The k by k leading principal submatrix of a ρ-wedge-shaped matrix, k > ρ,
is ρ-wedge-shaped, too. Similarly for the trailing principal submatrix (which
means principal submatrix in the right bottom corner).
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Finally note that, when we talk about ρ-wedge-shaped matrices and the value
of ρ is not important, we often call them just wedge-shaped matrices. A ρ-wedge-
shaped matrix we usually denote T2ρ+1 (because it can have at most 2ρ+1 nonzero
diagonals).

In Sections 5.5 and 5.6 we generalize some properties of Jacobi matrices, i.e. sym-
metric tridiagonal matrices with positive subdiagonals, see [14, Chapter 2, pp. 13–
35], [21, Chapter 1.3, pp. 10–20], [90, Section 5, §36–§48, pp. 299–316], [66, Chap-
ter 7, pp. 119–150]; wedge-shaped matrices can be considered as generalization of
the Jacobi matrices.

The following lemma formulates an important relationship between the subprob-
lem obtained by the band algorithm and wedge-shaped matrices.

Lemma 5.1. Let Ã11 X̃1 ≈ B̃1 be the subproblem obtained by Algorithm 5.1, Ã11 ∈
Rm̃×ñ, B̃1 ∈ Rm̃×d. Then the matrix [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ] ∈ R(d+ñ)×(d+ñ) is d-
wedge-shaped matrix. Furthermore, if m̃ > d, then the matrix Ã11 ÃT

11 ∈ Rm̃×m̃ is
d-wedge-shaped matrix.

The following proof is illustrated on a simple example in the further text, see Ex-
ample 5.1 below the proof and subsequent notes.

Proof. In the proof we focus on the matrix Ã11 ÃT
11. A modification of the proof

for the matrix [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ] is straightforward (use [ B̃1 | Ã11 ]T instead of
Ã11 and exchange the roles of the α and γ components).

Consider m̃ > d. Denote ãT
i ≡ eT

i Ã11 the ith row of Ã11, i = 1 , . . . , m̃. Then
eT

k (Ã11 ÃT
11) el = ãT

k ãl denotes the lth component of the kth row of the matrix
Ã11 ÃT

11, i.e. components of Ã11 ÃT
11 are dot products of rows of Ã11.

Further we denote νU (i) ∈ { 1 , . . . , m̃ } the row index of the first nonzero
component in the ith column of Ã11, i = 1 , . . . , ñ (i.e. the row index of αi).
Analogously, denote νL(j) ∈ { 1 , . . . , ñ } the column index of the first nonzero
component in the jth row of Ã11, j = d + 1 , . . . , m̃ (i.e. the column index of γj).
Obviously, for j = d + 1 , . . . , m̃,

ãT
j = [ 0 , . . . , 0︸ ︷︷ ︸

νL(j)−1

| γj | ♥ , . . . , ♥ ] . (5.17)

where the components in the left or the right part of the row may be nonexistent.
Similarly, for i = 1 , . . . , ñ,

ãT
νU (i) = [♥ , . . . , ♥︸ ︷︷ ︸

i−1

|αi | 0 , . . . , 0 ] , (5.18)

where the components in the left or the right part of row may be nonexistent.
Further, because νL(j) ∈ { 1 , . . . , ñ } we choose from (5.18) only the following
rows, for j = d + 1 , . . . , m̃,

ãT
νU (νL(j)) = [♥ , . . . , ♥︸ ︷︷ ︸

νL(j)−1

|ανL(j) | 0 , . . . , 0 ] . (5.19)

Compare with Example 5.1 below this proof and subsequent notes.
Recall that ανL(j) is the first nonzero component in the (νL(j))th column of Ã11,

for j = d + 1 , . . . , m̃. Consequently the components of the jth row of Ã11 ÃT
11 are

ãT
j ãl = 0 , for l = 1 , . . . , νU (νL(j)) − 1 ,
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and the first nonzero component is

ãj ãT
νU (νL(j)) = ανL(j) γj > 0 , (5.20)

for j = d + 1 , . . . , m̃. This first nonzero component may be followed by several
generally nonzero components, and, always, by the diagonal component ãT

j ãj =
‖ãj‖2 ≥ γ2

j > 0. The other components in the jth row of Ã11 ÃT
11 follow from the

symmetry of Ã11 ÃT
11.

It was shown that (5.20) represents the first nonzero component in the jth row,
j = d + 1 , . . . , m̃, of Ã11 ÃT

11 ∈ Rm̃×m̃. Thus νU (νL(j)) is the row index of this
first nonzero component, the index ν(j) from the definition of a ρ-wedge shaped
matrix, i.e., νU (νL(j)) ≡ ν(j), see Definition 5.2.

It remains to show that the sequence { j − νU (νL(j)) }m̃
j=d+1 is positive and

nonincreasing. The positiveness means that the first nonzero component (5.20) is
not the diagonal component, which follows simply from the fact that ανL(j) is always
over γj in Ã11, see also the example (5.16). Further, because the integer sequences
{ νU (i) }ñ

i=1 and { νL(j) }m̃
j=d+1 are increasing, { νU (νL(j)) }m̃

j=d+1 is increasing too,
and thus { j − νU (νL(j)) }m̃

j=d+1 must be nonincreasing. Thus Ã11 ÃT
11 ∈ Rm̃×m̃ is

a d-wedge-shaped-matrix.

It is worth to note that the condition m̃ > d in Lemma 5.1 is only formal. The
matrix Ã11 must have the α1 component in the first d rows Ã11 (it is a consequence
of the assumption AT B �= 0), but it may not have the γd+1 component, see also
Sections 5.2 and 5.3. The condition m̃ > d ensures existence of γd+1 and simplifies
the proof. If m̃ = d, then Ã11 ÃT

11 ∈ Rd×d is general, and it does not make sense
to call this matrix d-wedge-shaped. But we will see that all results achieved further
in Sections 5.5 and 5.6 become trivial and are still valid for the matrix Ã11 with
m̃ = d.

Further, note that if the α1 component is not in the first row, i.e. νU (1) > 1, or
if the γd+1 component is not in the first column, i.e. νL(d + 1) > 1, then the first
nonzero component in the (d + 1)st row of the d-wedge-shaped matrix Ã11 ÃT

11 is
not in the first column, i.e. ν(d+1) > 1, see also Definition 5.2 and the subsequent
notes. The consequence of this fact is that the bandwidth of the matrix Ã11 ÃT

11

is smaller than d. In particular, if the α1 component is not in the first row, i.e.
νU (1) ≡ � + 1 > 1, then the first � rows (and columns) of Ã11 ÃT

11 are zero. See
also the following example.

Example 5.1. Consider Ã11 ∈ Rm̃×ñ, m̃ = 7, ñ = 5 and d = 5, such that

Ã11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
α1

β3,6

β4,6 α2

β5,6 β5,7 α3

γ6 β6,8 α4

γ7 α5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

} � ≡ 1
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

d ≡ 5
,

where α1 is in the second row and γd+1 = γ6 in the second column. Because
7 = m̃ > d = 5, Ã11 ÃT

11 is a d-wedge shaped matrix; we will follow the proof above.
The row indices of the first nonzero component in the ith column, i = 1 , . . . , ñ,
are:

νU (1) = 2 , νU (2) = 4 , νU (3) = 5 , νU (4) = 6 , νU (5) = 7 ;

we see that νU (i) ∈ { 1 , . . . , m̃ }. Similarly the column indices of the first nonzero
components in the j row, j = d + 1 , . . . , m̃, are:

νL(6) = 2 , νL(7) = 4 ;
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and we see that νL(j) ∈ { 1 , . . . , ñ }. Then the values composite function νU (νL(j))
for j = d + 1 , . . . , m̃ follows:

νU (νL(6)) = νU (2) = 4 , νU (νL(7)) = νU (4) = 6 .

The dot products of the 6th row with the 1st, 2nd, and 3rd rows of Ã11 are zero;
the product of the 9th row with 4th row, νU (νL(6)) = 4, is the first nonzero; the
products of the 6th row with the 5th row may be nonzero as well as zero, and with 6th
and 7th rows are nonzero. Similarly for the 7th row; the first nonzero dot product
is with the 6th row, νU (νL(7)) = 6. These dot products represents components of
the 6th and 7th row of the Ã11 ÃT

11 matrix. The whole matrix Ã11 ÃT
11 follows:

Ã11 ÃT
11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
♣ ♥ ♥ ♥
♥ ♥ ♥ ♥
♥ ♥ ♣ ♥ ♣
♥ ♥ ♥ ♣ ♥

♣ ♥ ♣ ♣
♣ ♣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

} � ≡ 1
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

d ≡ 5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
α2

1 α1β3,6 α1β4,6 α1β5,6

α1β3,6 β2
3,6 β3,6β4,6 β3,6β5,6

α1β4,6 β3,6β4,6 β2
4,6 + α2

2 β4,6β5,6 + α2β5,7 α2γ6

α1β5,6 β3,6β5,6 β4,6β5,6 + α2β5,7 β2
5,6 + β2

5,7 + α2
3 β5,7γ6 + α3β6,8

α2γ6 β5,7γ6 + α3β6,8 γ2
6 + β2

6,8 + α2
4 α4γ7

α4γ7 γ2
7 + α2

5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

0 0
0 T2(d−1)+1

]
.

The sequence { j − ν(j) }m̃
j=d+1 ≡ { j − νU (νL(j)) }m̃

j=d+1 is ( 2, 1 ), i.e., it is posi-
tive and nonincreasing, and thus the matrix T2d+1 ≡ Ã11 ÃT

11 is a d-wedge-shaped
matrix.

Because νU (1) = 2, the first row and column of the matrix Ã11 ÃT
11 is zero,

T2d+1 contains the (d − 1)-wedge-shaped matrix T2(d−1)+1 with smaller dimension.
Further, because νL(d + 1) = 2, the bandwidth of both matrices T2d+1, T2(d−1)+1

is, in general, equal to 3, i.e. smaller than d as well as d− 1. Moreover, recall that
all the coefficients βi,j can be zero. If, for example, β5,6 = 0, then the bandwidth
of T2d+1 ≡ Ã11 ÃT

11 as well as T2(d−1)+1 is equal to 2. See also Definition 5.2 and
the subsequent notes.

For a bigger example of a ρ-wedge-shaped matrix [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ] with ρ = 9
see Figure 5.1.

Note that the situation with the matrix [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ] from Lemma 5.1
is simpler. The component γ1 is always in the first row of the matrix [ B̃1 | Ã11 ]T .
Further [ B̃1 | Ã11 ]T must contain the component α1 (because Ã11 must contain α1

in the first d rows); the component α1 can be in the (� + 1)st column � < d.

Remark 5.8. From Lemma5.1 it follows that Ã11 ÃT
11 and [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ]

are wedge-shaped matrices. Because ÃT
11 Ã11 is the trailing principal submatrix of

the second one, it is also a wedge-shaped matrix.
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Figure 5.1: The top plot shows an example of a banded problem,
the bottom plot shows the corresponding ρ-wedge-shaped matrix,
ρ = 9. Bigger dots represent nonzero components (♣); smaller
the components which may be nonzero as well as zero (♥).
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5.5 Singular values in [ B̃1 | Ã11 ] problem

Here we study multiplicities of singular values of the matrices Ã11 and [ B̃1 | Ã11 ],
i.e. multiplicities of eigenvalues of proper band and wedge-shaped matrices. It
is well known that a Jacobi tridiagonal matrix has simple eigenvalues, see, e.g.,
[66, Section 7.7, Lemma 7.7.1, p. 134]. In the following text we give an analogous
assertion for proper band and wedge-shaped matrices.

5.5.1 Eigenvalues of generalized Jacobi matrices

Lemma 5.2. Let T2ρ+1 ∈ Rn×n be a symmetric proper band matrix with the band-
width equal to bw (T2ρ+1) ≡ ρ ≥ 1. Then the eigenvalues of the matrix T2ρ+1 have
multiplicities at most ρ.

Proof. Let ξ ∈ C be an eigenvalue of T2ρ+1. Denote ti,j ≡ eT
i T2ρ+1 ej the jth

component of the ith row of T2ρ+1. The matrix (T2ρ+1 − ξ In) has a nonzero
(n − ρ) by (n − ρ) minor

∏n
j=ρ+1 tj,j−ρ. Thus rank (T2ρ+1 − ξ In) ≥ (n − ρ), and

0 < dim (N (T2ρ+1 − ξ In) ) ≤ ρ, cf. [66]. Finally, since T2ρ+1 has a full set of
orthogonal eigenvectors, the multiplicity of ξ is smaller than or equal to ρ.

Example 5.2. Consider T2ρ+1 ∈ R
n×n a symmetric proper band matrix with the

bandwidth equal to bw (T2ρ+1) ≡ ρ ≥ 1 such that, e.g.,

T2ρ+1 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥ ♥ ♥ ♣

♣ ♥ ♥ ♥ ♥ ♥
♣ ♥ ♥ ♥ ♥

♣ ♥ ♥ ♥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ρ = 3 .

The nonzero (n − ρ) by (n − ρ) minor of (T2ρ+1 − ξ In) is, e.g.,

det

⎛
⎜⎜⎝
⎡
⎢⎢⎣

♣ ♥ ♥ ♥̃
♣ ♥ ♥

♣ ♥
♣

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

n∏
j=ρ+1

♣ �= 0 .

For ρ = 1, Lemma 5.2 reduces to the well known assertion that the Jacobi matrix –
symmetric tridiagonal matrix with nonzero first sub- and superdiagonal has simple
eigenvalues, see, e.g., [66, Section 7.7, Lemma 7.7.1, p. 134].

Lemma 5.3. Let T2ρ+1 ∈ Rn×n be a symmetric ρ-wedge-shaped matrix with ρ ≥ 1.
Then the eigenvalues of the matrix T2ρ+1 have multiplicities at most ρ.

Proof. Let ξ ∈ C be an eigenvalue of T2ρ+1. Denote ti,j ≡ eT
i T2ρ+1 ej the jth

component of the ith row of T2ρ+1. The sequence { j − ν(j) }n
j=ρ+1 is, from the

definition of a ρ-wedge-shaped matrix, positive and nonincreasing. Recall that ν(j)
denotes the first nonzero component in the jth row of the given matrix, see also the
definition of a ρ-wedge-shaped matrix (Definition 5.2).

Because the sequence { j − ν(j) }n
j=ρ+1 is positive, all the components tj,ν(j),

j = ρ + 1 , . . . , n are in the strict lower triangular part (under the main diagonal)
of T2ρ+1 (and of (T2ρ+1−ξ In), too); and thus tj,ν(j) �= 0 independently on the value
of ξ. Because the sequence { j−ν(j) }n

j=ρ+1 is nonincreasing, the value of ν(j) must
grow as fast as j, or faster; and thus all the tj,ν(j), j = ρ + 1 , . . . , n components
are in different rows and different columns of T2ρ+1 (and of (T2ρ+1 − ξ In), too).
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Consequently, the matrix (T2ρ+1 − ξ In) has a nonzero (n− ρ) by (n− ρ) minor∏n
j=ρ+1 tj,ν(j). Thus rank (T2ρ+1 − ξ In) ≥ (n − ρ), and 0 < dim (N (T2ρ+1 −

ξ In) ) ≤ ρ, cf. [66]. Finally, since T2ρ+1 has a full set of orthogonal eigenvectors,
the multiplicity of ξ is smaller than or equal to ρ.

Example 5.3. Consider T2ρ+1 ∈ Rn×n a symmetric ρ-wedge-shaped matrix with
ρ ≥ 1 such that, e.g.,

T2ρ+1 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♥
♣ ♥ ♥ ♥ ♥ ♣

♣ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥

♣ ♥ ♥ ♣
♣ ♥ ♣

♣ ♥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ρ = 3 .

Using the column permutation Π ≡ [ e1 , e2 | e4 , e5 | e7 , e8 ‖ e3 | e6 | e9 ] gives

(T2ρ+1 − ξ In)Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

♥̃ ♥ ♣ ♥
♥ ♥̃ ♥ ♣ ♥
♥ ♥ ♥ ♥ ♥̃
♣ ♥ ♥̃ ♥ ♥ ♣

♣ ♥ ♥̃ ♣ ♥ ♥
♣ ♥ ♥ ♥̃

♣ ♥̃ ♣ ♥
♣ ♥̃ ♣

♣ ♥̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the nonzero (n − ρ) by (n − ρ) minor of (T2ρ+1 − ξ In) is revealed.

Example 5.4. For clarity we further consider T2ρ+1 ∈ Rn×n a symmetric ρ-wedge-
shaped matrix with ρ ≥ 1, and with ν(ρ + 1) > 1 (see Definition 5.2), such that,
e.g.,

T2ρ+1 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

♥ ♥ ♥
♥ ♥ ♥
♥ ♥ ♥ ♣

♣ ♥ ♣
♣ ♥ ♣

♣ ♥ ♣
♣ ♥ ♣

♣ ♥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ρ = 3 .

Using the column permutation Π ≡ [ e3 , . . . , e7 ‖ e1 , e2 | e8 ] gives

(T2ρ+1 − ξ In)Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

♥ ♥̃ ♥
♥ ♥ ♥̃
♥̃ ♣ ♥ ♥
♣ ♥̃ ♣

♣ ♥̃ ♣
♣ ♥̃ ♣

♣ ♥̃ ♣
♣ ♥̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the nonzero (n − ρ) by (n − ρ) minor of (T2ρ+1 − ξ In) is revealed.

Obviously Lemma 5.3 generalizes the assertion of Lemma5.2.
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5.5.2 Singular values of matrices Ã11 and [ B̃1 | Ã11 ]

Theorem 5.1. Let Ã11 X̃1 ≈ B̃1 be the subproblem obtained by the Algorithm 5.1.
Then the singular values of the (d + 1)-diagonal matrices Ã11 and [ B̃1 | Ã11 ], re-
spectively, have multiplicities at most d.

Proof. The singular values of Ã11 are the square roots of the nonzero eigenvalues
of the (symmetric positive semidefinite) d-wedge-shaped matrix Ã11 ÃT

11. Simi-
larly, the singular values of [ B̃1 | Ã11 ] are the square roots of the eigenvalues of
the (symmetric positive semidefinite) d-wedge-shaped matrix [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ].
See Lemma5.1. Consequently Lemma5.3 proves the assertion.

Remark 5.9. Note that the assertion of Theorem 5.1 can be in some particular
cases improved. If the first � rows of the matrix Ã11 are zero (such as in Example
5.1), then

Ã11 ÃT
11 = diag ( 0�,� , T2(d−�)+1) ,

where T2(d−�)+1 is a (symmetric positive semidefinite) (d− �)-wedge-shaped subma-
trix of Ã11 ÃT

11. Consequently Ã11 has singular values with multiplicities at most
d − �. Further improving may be obtained using the (symmetric positive definite)
wedge-shaped matrix ÃT

11 Ã11. As an illustration see the following example: For

Ã11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

♣
♥ ♣
♥ ♥
♣ ♥

♣ ♣
♣ ♣

♣ ♣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, d = 3 ,

we obtain

Ã11 ÃT
11 ÃT

11 Ã11

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

♣ ♥ ♥ ♣
♥ ♣ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♥
♣ ♥ ♥ ♣ ♥

♣ ♥ ♥ ♣ ♣
♣ ♣ ♣

♣ ♣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, =

⎡
⎢⎢⎢⎢⎣

♣ ♥
♥ ♣ ♣

♣ ♣ ♣
♣ ♣ ♣

♣ ♣

⎤
⎥⎥⎥⎥⎦ .

The first matrix is d-wedge-shaped with the bandwidth equal to d = 3, thus Ã11 has
singular values with multiplicities at most 3 (in agreement with Theorem 5.1).

The second matrix may be interpreted as ρ-wedge-shaped with ρ = 2, thus Ã11

has singular values with multiplicities at most 2. But because ν(ρ + 1) ≡ ν(3) =
2 > 1, the bandwidth of this matrix is smaller than ρ, i.e., equal to one.

One can see that if the ♥ components in the second matrix are zeros, then Ã11

can have at most one double singular value, the other must be simple; and if the ♥
components are nonzero, Ã11 has only simple singular values.

Summarizing, the subproblem [ B̃1 | Ã11 ] obtained by the band algorithm has
the following property:

(G5) The matrix Ã11 has singular values with multiplicities at most d, and because
Ã11 is of full column rank, it does not have zero singular values.
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5.6 Singular vector subspaces in [ B̃1 | Ã11 ] problem

We need to describe the singular vectors and the left singular vector subspaces of
Ã11, i.e. eigenvectors and eigenspaces of the matrix Ã11 ÃT

11, together with the
corresponding components of the right-hand side B̃1.

The right singular vectors and the right singular vector subspaces of the matrix
[ B̃1 | Ã11 ] can be studied analogously as the eigenvectors and eigenspaces of the
matrix [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ]. The results will be useful in Chapter 6.

It is well known that the eigenvector of a Jacobi tridiagonal matrix has nonzero
first and last components, and it can not contain two subsequent zero components,
see, e.g., [66, Section 7.9, Theorem7.9.3, p. 140], see also [78, pp. 3–4]. In the fol-
lowing text we give an analogous assertion for proper band matrices and partially
for wedge-shaped matrices.

5.6.1 Eigenvectors of generalized Jacobi matrices

Lemma 5.4. Let T2ρ+1 ∈ Rn×n be a symmetric proper band matrix with the band-
width equal to bw (T2ρ+1) ≡ ρ ≥ 1, and let λ ∈ R, x = [ ξ1 , . . . , ξn ]T ∈ R

n,
‖x‖ = 1 be an eigenpair of T2ρ+1,

T2ρ+1 x = λx .

Then:

(i) The subvector [ ξ1 , . . . , ξρ ]T of x of length ρ is nonzero.

(ii) The subvector [ ξn−ρ+1 , . . . , ξn ]T of x of length ρ is nonzero.

(iii) All subvectors [ ξl , . . . , ξl+2ρ−1 ]T of x, l = 1 , . . . , n − 2ρ + 1, of length 2ρ
are nonzero.

Proof. Denote ti,j ≡ eT
i T2ρ+1 ej . Assume by contradiction ξ1 = . . . = ξρ ≡ 0.

Using T2ρ+1 x = λx and comparing the kth components on the left and on the
right, k = 1 , . . . , n − ρ, gives

eT
k (T2ρ+1 x ) = λ ξk ,(∑k+ρ−1

j=1
tk,j ξj

)
+ tk,k+ρ ξk+ρ = λ ξk .

Since tk,k+ρ �= 0, we have ξk+ρ = 0. Consequently ‖x‖ = 0 which contradicts the
assumption ‖x‖ = 1. The proof of assertion (ii) is fully analogous.

Now we prove (iii). If n ≤ 2ρ, then the assertion (iii) is trivially satisfied. Let
n > 2ρ and assume by contradiction ξl = . . . = ξl+2ρ−1 ≡ 0. Obviously, it is
sufficient to prove it only for 2 ≤ l ≤ n − 2ρ (the cases l = 1 and l = n − 2ρ + 1
are given by (i) and (ii)). Because tl+ρ−1,l−1 �= 0, equating

eT
l+ρ−1 (T2ρ+1 x ) = λ ξl+ρ−1 ,

tl+ρ−1,l−1 ξl−1 +
(∑l+2ρ−1

j=l
tl+ρ−1,j ξj

)
= λ ξl+ρ−1 ,

gives xl−1 = 0; similarly because tl+ρ,l+2ρ �= 0 equating

eT
l+ρ (T2ρ+1 x ) = λ ξl+ρ ,(∑l+2ρ−1

j=l
tl+ρ,j ξj

)
+ tl+ρ,l+2ρ ξl+2ρ = λ ξl+ρ ,

gives xl+2ρ = 0. Using induction, all components of x are zero and thus ‖x‖ = 0
which contradicts the assumption ‖x‖ = 1.
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For ρ = 1, Lemma5.4 reduces to the well known assertion that eigenvectors of the
Jacobi matrix – symmetric tridiagonal matrix with nonzero first sub- and super-
diagonal, have nonzero first and last component, and can not have two subsequent
zero components, see, e.g., [66, Section 7.9, Theorem7.9.3, p. 140].

Lemma 5.5. Let T2ρ+1 ∈ Rn×n be a symmetric ρ-wedge-shaped matrix with ρ ≥ 1,
and let λ ∈ R, x = [ ξ1 , . . . , ξn ]T ∈ Rn, ‖x‖ = 1 be an eigenpair of T2ρ+1,

T2ρ+1 x = λx .

Then the subvector [ ξ1 , . . . , ξρ ]T of x of length ρ is nonzero.

Proof. Denote ti,j ≡ eT
i T2ρ+1 ej . Recall that ν(j) denotes the column index of the

first nonzero component in the jth row (or, using the symmetry, the row index of
the first nonzero component in the jth column) of the matrix T2ρ+1, see also the
definition of a ρ-wedge-shaped matrix (Definition 5.2).

Assume by contradiction ξ1 = . . . = ξρ ≡ 0. Using T2ρ+1 x = λx and
comparing (ν(k))th components on the left and on the right, k = ρ + 1 , . . . , n,
gives

eT
ν(k) (T2ρ+1 x ) = λ ξν(k) ,(∑k−1

j=1
tν(k),j ξj

)
+ tν(k),k ξk = λ ξν(k) .

Because ξ1 = . . . ξk−1 = 0, and because ν(k) < k (follows from the positiveness of
the sequence { k− ν(k) }n

k=ρ+1) it is ξν(k) = 0, too. Since tν(k),k = tk,ν(k) �= 0, we
have ξk = 0. Consequently ‖x‖ = 0 which contradicts the assumption ‖x‖ = 1.
(Compare this proof with the proof of assertion (i) from Lemma 5.4 recalling that for
a proper band matrix with the bandwidth ρ is ν(k) ≡ k−ρ, k = ρ+1 , . . . , n.)

The assertions (ii) and (iii) of Lemma 5.4 can not be generalized for wedge-shaped
matrices. But the following example shows that there exists another nonzero sub-
vector of the given eigenvector of a wedge-shaped matrix.

Example 5.5. Let λ ∈ R, x ∈ Rn, ‖x‖ = 1 be an eigenpair of the ρ-wedge-shaped
matrix with ρ = 3, n = 9,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♥ ♥
♣ ♥ ♥ ♥ ♥ ♣

♣ ♥ ♥ ♥ ♥ ♣
♣ ♥ ♥ ♥

♣ ♥ ♥ ♣
♣ ♥ ♣

♣ ♥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

First we illustrate the proof of Lemma 5.5. Here the sequence { ν(j) }n
j=ρ+1 is

( 1, 2, 4, 5, 7, 8 ). Assume by contradiction ξ1 = ξ2 = ξ3 = 0. Comparing of the
(ν(ρ+1))th, i.e. 1st, components of T2ρ+1 x = λx gives ξ4 = 0; further comparing
the (ν(ρ + 2))th, i.e. 2nd, component gives ξ5 = 0; comparing the (ν(ρ + 3))th, i.e.
4th, component gives ξ6 = 0; etc., finally comparing the (ν(n))th, i.e. 8th, compo-
nent gives ξ9 = 0 and thus ‖x‖ = 0 which contradicts the assumption ‖x‖ = 1.

Similarly, the subvector [ x3 , x6 , x9 ]T of x of length ρ must be nonzero. The
proof is analogous to the proofs of Lemmas 5.4 and 5.5.
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5.6.2 Eigenspaces of generalized Jacobi matrices

The goal of this section is to show that the subproblem obtained by the band
algorithm has the property (G3), see Section 4.4. It was already proved that an
eigenvector x = [ ξ1 , . . . , ξn ]T , ‖x‖ = 1 of a ρ-wedge-shaped matrix must contain
a nonzero subvector [ ξ , . . . , ξρ ]T of length ρ. But such matrix can have multiple
eigenvalues. It will be useful to show that the subvectors of length ρ, of the basis
vectors corresponding to the given eigenspace, are linearly independent.

Lemma 5.6. Let T2ρ+1 ∈ Rn×n be a symmetric ρ-wedge-shaped matrix with ρ ≥ 1,
and let λ ∈ R be its eigenvalue with the multiplicity k, and

x(1) =
[

ξ
(1)
1 , . . . , ξ

(1)
n

]T
∈ R

n ,

x(2) =
[

ξ
(2)
1 , . . . , ξ

(2)
n

]T
∈ R

n ,

...

x(k) =
[

ξ
(k)
1 , . . . , ξ

(k)
n

]T
∈ R

n ,

be an orthonormal basis of the corresponding eigenspace,

T2ρ+1

[
x(1) , . . . , x(k)

]
= λ

[
x(1) , . . . , x(k)

]
.

Then the leading submatrix

Ξ ≡

⎡
⎢⎢⎣

ξ
(1)
1 ξ

(2)
1 · · · ξ

(k)
1

...
...

. . .
...

ξ
(1)
ρ ξ

(2)
ρ · · · ξ

(k)
ρ

⎤
⎥⎥⎦ ∈ R

ρ×k

of the matrix [ x(1) , . . . , x(k) ] is of full column rank.

Proof. First, Lemma5.3 ensures that k ≤ ρ. Let [ η1 , . . . , ηk ]T �= 0 be the vector
of coefficients of an arbitrary nontrivial linear combination

y ≡ x(1) η1 + x(2) η2 + . . . + x(k) ηk .

Obviously y = [ μ1 , . . . , μn ]T represents an eigenvector of T2ρ+1 containing by
Lemma 5.5 the nonzero subvector[

μ1 , . . . , μρ

]T = Ξ
[

η1 , . . . , ηk

]T �= 0 ,

of length ρ. Consequently, any nontrivial linear combination of columns of Ξ is
nonzero, thus Ξ must be of full column rank.

The assertion of Lemma5.6 can be extended to any basis of the given eigenspace
(not necessarily orthonormal).

5.6.3 Left singular vector subspaces of Ã11

The following theorem uses results of Lemma 5.6 for the problem Ã11 X̃1 ≈ B̃1.

Theorem 5.2. Let Ã11 X̃1 ≈ B̃1 be the subproblem obtained by Algorithm 5.1. Let
ς ′ be a singular value of Ã11 with multiplicity k, and u′

1 , . . . , u′
k an orthonormal

basis of the corresponding left singular vector subspace of Ã11. Then the matrix[
u′

1 , . . . , u′
k

]T
B̃1 ∈ R

k×d

is of full row rank.



90 CHAPTER 5. BAND GENERALIZATION OF THE GOLUB-KAHAN ...

Proof. The left singular vector subspaces of Ã11 are identical to the eigenspaces of
the matrix Ã11 ÃT

11, which is, by Lemma 5.1, a d-wedge-shaped matrix.
The multiplicity of the singular value ς ′ of Ã11 (or, equivalently, the multiplicity

of the eigenvalue (ς ′)2 of Ã11 ÃT
11) is, by Theorem5.1, equal to at most d, i.e. k ≤ d.

The leading d by k submatrix Ξ of the matrix [u′
1 , . . . , u′

k ] is, by Lemma 5.6,
of full column rank. Recall that the matrix B̃1 = [ RT

1 | 0 ]T contains a square
nonsingular leading submatrix R1 ∈ Rd×d, see (5.2). Consequently, the product
RT

1 Ξ = B̃T
1 [ u′

1 , . . . , u′
k ] must have full column rank, which finishes the proof.

Thus finally, the subproblem [ B̃1 | Ã11 ] obtained by the band algorithm has the
following property:

(G3) Let ς ′j be the singular value of Ã11 with the multiplicity kj , let U ′
j be the

matrix with the corresponding orthonormal singular vectors as its columns.
Then (U ′

j)
T B̃1 are of full row rank for all j.

The following remark will be useful in Chapter 6.

Remark 5.10. Let Ã11 X̃1 ≈ B̃1 be the subproblem obtained by Algorithm 5.1.
Let ς be a singular value of [ B̃1 | Ã11 ] with multiplicity k, and v1 , . . . , vk an or-
thonormal basis of the corresponding right singular vector subspace. Application of
Lemma5.6 on the d-wedge-shaped matrix [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ] gives that the d by
k leading submatrix of [ v1 , . . . , vk ] is of full column rank.

5.7 Summary

Here we briefly summarize the properties proved through this chapter. The band
generalization of the Golub-Kahan bidiagonalization described in Algorithm 5.1
produces a subproblem [ B̃1 | Ã11 ] having the properties:

(G1) The matrix Ã11 is of full column rank equal to ñ ≤ m̃ (see Section 5.3).

(G2) The matrix B̃1 is of full column rank equal to d̃ ≡ d (by assumption).

(G3) Let ς ′j be the singular value of Ã11 with the multiplicity kj , let U ′
j be the

matrix with the corresponding orthonormal singular vectors as its columns.
Then (U ′

j)
T B̃1 are of full row rank for all j (see Theorem5.2).

(G4) The matrix [ B̃1 | Ã11 ] is of full row rank equal to m̃ (see Section 5.3).

(G5) The matrix Ã11 has singular values with multiplicities at most d, and it does
not have zero singular values (see Theorem5.1).

Recall that B is assumed to have column rank equal to d with no loss of generality,
see Section 5.1.

Thus it was shown that both, the problem [B1 |A11 ] obtained from a general
problem [ B |A ] by the data reduction in Chapter 4 (see Section 4.4), as well as the
problem [ B̃1 | Ã11 ] obtained from [B |A ] by the band algorithm in this chapter,
have properties (G1)–(G5).

Moreover [ B̃1 | Ã11 ] has the following two properties:

• The matrix [ B̃1 | Ã11 ] has singular values with multiplicities at most d, this
matrix is of full row rank, shown in Theorem5.1.

• The property which is shown in Remark 5.10.



Chapter 6

Core problem

Chapters 4 and 5 show how to transform the linear approximation problem AX ≈ B
with multiple right-hand sides into the specific block forms. In both cases we obtain
the reduced subproblem having properties (G1)–(G5).

In this chapter we show that properties (G1)–(G3) imply the minimality of the
dimensions of the reduced problems, i.e. we show that the subproblems obtained by
the SVD-based reduction, in Chapter 4, as well as by the generalized Golub-Kahan
algorithm, in Chapter 5, can not be further reduced. We use properties (G1)–(G3)
for definition of the core problem in the multiple right-hand side case.

We show that the core problem within the problem with multiple right-hand sides
can contain more than one independent subproblems (of smaller dimensions) that
can not be neglect. Finally we show by a counterexample that the core problem in
the multiple right-hand sides case does not have a TLS solution in general.

6.1 Core problem definition

Consider a general approximation problem (2.1) with AT B �= 0. Let [ B1 |A11 ]
be the subproblem obtained by the data reduction given in Chapter 4 applied to
[ B |A ]. The subproblem [ B1 |A11 ] has the properties (G1)–(G5), B1 ∈ Rm̄×d̄,
A11 ∈ Rm̄×n̄. Assume that there exists an orthogonal transformation such that

P̂T
[

B1 A11

] [ R̂ 0
0 Q̂

]
=
[

B̂1 0 Â11 0
0 0 0 Â22

]
(6.1)

where B̂1 ∈ Rm̂×d̂, Â11 ∈ Rm̂×n̂, and d̂ ≤ d̄, n̂ ≤ n̄, m̂ ≤ m̄ and at least one
of these inequalities is strict; P̂−1 = P̂T , Q̂−1 = Q̂T , R̂−1 = R̂T . Then the
problem A11 X1 ≈ B1 can be further reduced, and, possibly, decomposed into two
independent subproblems Â11 X̂1 ≈ B̂1, Â22 X̂2 ≈ 0.

From (G2), see Section 4.4, the right-hand side matrix B1 is of full column rank,
rank (B1) = d̄ (d̄ ≤ m̄). Thus the matrix on the right in the following equality,

P̂T B1 R̂ =
[

B̂1 0
0 0

]
,

must be of full column rank, too. It gives that d̂ ≡ d̄. Consequently, the transfor-
mation (6.1) reduces to

P̂T
[

B1 A11

] [ R̂ 0
0 Q̂

]
=
[

B̂1 Â11 0
0 0 Â22

]
. (6.2)

91
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From (G3), see Section 4.4, for all left singular vectors ui of A11, the product uT
i B1

are nonzero. The set of left singular vectors of A11 is the union of the sets of left
singular vectors [ ûT

1,j | 0 ]T , j = 1 , . . . , m̂, and [ 0 | ûT
2,k ]T , k = 1 , . . . , m̄ − m̂,

where û1,j and û2,k are left singular vectors of Â11 and Â22, respectively. Since
the product [ 0 | ûT

2,k ] [ B̂1
0 ] = 0 is zero for all k, Â22 must have no left singular

vectors and therefore it has no rows, i.e., Â22 and the corresponding block row are
nonexistent, which gives m̂ ≡ m̄. Consequently, the transformation (6.2) reduces
to

P̂T
[

B1 A11

] [ R̂ 0
0 Q̂

]
=
[

B̂1 Â11 0
]

. (6.3)

And finally, from (G1), see Section 4.4, the system matrix A11 is of full column
rank, rank (A11) = n̄ ≤ m̄. Thus the matrix on the right in the following equality,

P̂T A11 Q̂ =
[

Â11 0
]

,

must be of full columns rank, too. It gives that n̂ ≡ n̄, and thus the transformation
(6.3) reduces to

P̂T
[

B1 A11

] [ R̂ 0
0 Q̂

]
=
[

B̂1 Â11

]
. (6.4)

Summarizing, we showed that any transformation of the form (6.1) applied on a
problem having properties (G1)–(G3) always reduces to the form (6.4).

The same idea can be applied on the subproblem [ B̃1 | Ã11 ] having properties
(G1)–(G3) (see Section 5.7), returned by the banded generalization of the Golub-
Kahan bidiagonalization algorithm (given in Chapter 5) applied on the original
problem [ B |A ]. (Recall that the assumption B of full column rank in Chapter 5
is only technical, see the discussion in Section 5.1.) Moreover, the same idea can be
applied on any reduced subproblem having properties (G1)–(G3), obtained by an
orthogonal transformation from the original problem [B |A ].

Corollary 6.1. Let [ B |A ] be a general approximation problem. Both subproblems
[ B1 |A11 ] obtained by the data reduction given in Chapter 4 applied on [ B |A ],
and [ B̃1 | Ã11 ] obtained from the banded algorithm given in Chapter 5 applied on
[ B |A ] must have the same (minimal) dimension and thus both represent the same
subproblem of the original problem [ B |A ] however in different coordinates.

The proof follows from the considerations above.
Because the construction above shows that the properties (G1)–(G3) define some

minimality property of the given problem, the following a core problem definition
can be formulated.

Definition 6.1 (Core problem). The subproblem A11 X1 ≈ B1 is a core problem
within the approximation problem AX ≈ B if [ B1 |A11 ] is minimally dimensioned
and A22 maximally dimensioned subject to (4.3), i.e. subject to the orthogonal
transformation

PT
[

B A
] [ R 0

0 Q

]
=
[

PT B R PT AQ
]

≡
[

B1 0 A11 0
0 0 0 A22

]
.
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This definition has motivation in the Definition 1.1 of the core problem in the single
right-hand side problems, firstly used by Paige and Strakoš in [64].

In accordance with the Definition 6.1, the subproblem obtained by the data
reduction given in Chapter 4 or equivalently, by the banded algorithm given in
Chapter 5 from the given [B |A ], is called the core problem within [ B |A ] . The
form [ B1 |A11 ] (4.25) of the core problem obtained by the data reduction given in
Chapter 4 is called the SVD form of the core problem. Similarly, the form [ B̃1 | Ã11 ],
e.g., (5.16), of the core problem obtained by the banded algorithm given in Chapter
5 is called the banded form of the core problem.

Definition 6.1 assumes existence of an original problem and defines the core prob-
lem through the relationship between them. But for any problem having properties
(G1)–(G3) can be artificially constructed an “original problem”; e.g., in according
to Definition 6.1, one can the problem having properties (G1)–(G3) call core prob-
lem within itself. Consequently, we introduce an alternative of a core problem which
uses only properties (G1)–(G3) (contrary to the fact, that the alternative definition
defies the native meaning of this term: “to be the core within an original problem”),
but it will be useful in some cases.

Definition 6.2 (Core problem; alternative definition). Any approximation problem
AX ≈ B having properties (G1)–(G3) is called a core problem.

Both definitions are equivalent, it follows from the considerations above.

Remark 6.1. Note that because properties (G1)–(G3) uniquely define the core
problem (up to an orthogonal transformation (6.4)) properties (G4)–(G5), see Sec-
tion 5.7, are implied by (G1)–(G3).

An application the banded reduction, see Chapter 5, on any problem having prop-
erties (G1)–(G3) yields a problem having properties (G1)–(G5) with the same di-
mensions. Because properties (G1)–(G5) are invariant with respect to the orthogo-
nal transformation of the form (6.4), thus the original problem must have properties
(G4)–(G5), too.

An application the SVD-based reduction, see Chapter 4, on any problem having
properties (G1)–(G3) yields a problem having properties (G1)–(G5) and (S1)–(S3),
see Section 4.4, with the same dimensions. Properties (S1)–(S3) are not invariant
with respect to a general orthogonal transformation of the form (6.4), thus properties
(S1)–(S3) are not general properties of a core problem.

6.2 Basic properties of the core problem

Here we summarize the basic properties of a core problem in the multiple right-
hand side case. A core problem has properties (G1)–(G3) has by definition, and,
as already discussed, properties (G4)–(G5) were proved from the SVD-based data
reduction as well as from the generalized Golub-Kahan approach. Moreover, the
core problem can always be transformed into the SVD form (4.25) having properties
(S1)–(S3).

The generalized Golub-Kahan approach further shows that the matrix of the
reduced problem [ B1 |A11 ] has singular values with multiplicities at most equal
to rank (B), see Theorem5.1; and that [B1 |A11 ] has the property described in
Remark 5.10, this additional property of core problems (which will be useful later
in the analysis of solvability in the TLS sense) is discussed in this section.

First we recapitulate some notation used in Chapter 3. Let A11 X1 ≈ B1,
A11 ∈ Rm̄×n̄, B1 ∈ Rm̄×d̄, be a core problem. Consider the SVD of [ B1 |A11 ],[

B1 A11

]
= U Σ V T , (6.5)



94 CHAPTER 6. CORE PROBLEM

where U−1 = UT , V −1 = V T , Σ = [ diag (σ1 , . . . , σm̄ ) | 0m̄,n̄+d̄−m̄ ], and

σ1 ≥ . . . ≥ σm̄ > 0 , (6.6)

recalling that [B1 |A11 ] is of full row rank, by (G2).
Here we concentrate on the incompatible problem R(B1) �⊂ R(A11) (the com-

patible case is simpler because it reduces to finding a solution of a system of linear
algebraic equations). Thus rank ([B1 |A11 ]) > rank (A11) which gives m̄ > n̄.

In order to handle a possible multiplicity of σn̄+1, we consider the following
notation

σn̄−q > σn̄−q+1 = . . . = σn̄︸ ︷︷ ︸
q

= σn̄+1 = . . . = σn̄+e︸ ︷︷ ︸
e

> σn̄+e+1 , (6.7)

where q singular values to the left and e − 1 singular values to the right are equal
to σn̄+1, and q ≥ 0, e ≥ 1. For convenience we denote n̄ − q ≡ p. If q = n̄, then
σp is nonexistent. Similarly, if e = m̄ − n̄, then σn̄+e+1 is nonexistent.

It will be useful to consider the following partitioning

V =

[
V

(q)
11 V

(q)
12

V
(q)
21 V

(q)
22

]
, (6.8)

where V
(q)
11 ∈ Rd̄×(n̄−q), V

(q)
12 ∈ Rd̄×(d̄+q), V

(q)
21 ∈ Rn̄×(n̄−q), V

(q)
22 ∈ Rn̄×(d̄+q), see

Figure 6.1 (compare with Figure 3.1). Further, define the following partitioning

V
(q)
12 =

[
W (q,e) V

(−e)
12

]
, (6.9)

where W (q,e) ∈ Rd̄×(q+e), V
(−e)
12 ∈ Rd̄×(d̄−e), 1 ≤ e < d̄, see Figure 6.1 (compare

with Figure 3.3).

V =

V
(q)
11 V

(q)
12

V
(q)
21 V

(q)
22

n̄ − q︷ ︸︸ ︷ d̄ + q︷ ︸︸ ︷⎫⎪⎬
⎪⎭ d̄

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n̄

V
(q)
12 = W (q,e) V

(−e)
12

q + e︷ ︸︸ ︷ d̄ − e︷ ︸︸ ︷⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

d̄

︸ ︷︷ ︸
d̄

Figure 6.1: Dimensions of the individual matrix blocks in the
partitioning (6.8) and (6.9). (Compare with Figure 3.1, p. 34,
and Figure 3.3, p. 47.)

The matrix W (q,e) contains leading subvectors (of length d̄) of the right singular
vectors of [ B1 |A11 ], corresponding to the singular value σn̄+1 with the multiplicity
q + e. The following theorem specifies the rank of this matrix.

Theorem 6.1. Let [ B1 |A11 ], B1 ∈ Rm̄×d̄ A11 ∈ Rm̄×n̄ be a core problem, and let
[ B1 |A11 ] = U Σ V T be its SVD, with the partitioning given by (6.8), (6.9).
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Let the matrix [ B1 |A11 ] have l distinct nonzero singular values ςj, each with
multiplicity ρj,

∑l
j=1 ρj = m̄. Then each d̄ by ρj block of [ V (q)

11 |V (q)
12 ] correspond-

ing to an individual singular value ςj is of full column rank ρj, j = 1 , . . . , l.
If n̄+d̄ > m̄, then the trailing d̄ by (n̄+d̄−m̄) block of [ V (q)

11 |V (q)
12 ] corresponding

to the null space N ([ B1 |A11 ]) is of full column rank ρl+1 ≡ n̄ + d̄ − m̄.

V =

⎫⎪⎬
⎪⎭ d̄

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n̄

︸︷︷︸
ρj

d̄︷ ︸︸ ︷

�
�

�
	









�

������������
· · · · · · · · · · · · ·

full column
rank blocks

Figure 6.2: Full column rank blocks in the matrix of right singu-
lar vectors V obtained from the SVD of the core problem matrix
[ B1 |A11 ]. Each highlighted block corresponding to an individual
singular value of [ B1 |A11 ] is of full column rank. If [B1 |A11 ] is
rectangular, then the last highlighted block (the rightmost) cor-
responding to the basis of N ([ B1 |A11 ]) is of full column rank.

Proof. Any core problem (here represented by the matrix [ B1 |A11 ]) can be orthog-
onally transformed into its banded form [ B̃1 | Ã11 ] described in Chapter 5, i.e.

PT
[

B1 A11

] [ R 0
0 Q

]
=
[

B̃1 Ã11

]
,

where P−1 = PT , Q−1 = QT , R−1 = RT . Denote Ṽ the matrix of the right
singular vectors of [ B̃1 | Ã11 ] with the splitting (6.8), then

RT
[

V11 V12

]
=
[

Ṽ11 Ṽ12

] ∈ R
d̄×(n̄+d̄) .

The ranks of the corresponding d̄ by ρj blocks in V and Ṽ must be the same,
j = 1 , . . . , l + 1, see also Figure 6.2. Lemma 5.6 applied on the wedge-shaped
matrix [ B̃1 | Ã11 ]T [ B̃1 | Ã11 ] gives that these d̄ by ρj blocks of Ṽ must be of full
column rank, see also Remark 5.10.

Theorem6.1 has an important corollary. The matrix W (q,e) (block of V ), see
(6.8), (6.9), and also Figure 6.1, corresponding to the singular value σn̄+1 with the
multiplicity q + e is of full column rank. As already mentioned, this result will be
useful later (in the following section) in the analysis of solvability of a core problem
in the TLS sense.

6.3 Solution of the core problem

This section studies the solvability of a core problem. We focus on the relation
between the results obtained by the TLS algorithm (Algorithm 3.1), applied to
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the original problem and to its core problem. The TLS algorithm (Algorithm 3.1)
returns a TLS solution if only if the problem belongs in the set F1, i.e. for the
problem is rankW (q,e) = e, see the partitioning (6.8)–(6.9) and Figure 6.1 (see
also Figure 3.5, p. 55). Thus this section further analyzes whether the core problem
belongs to the set F1.

Let [ B1 |A11 ] = U Σ V T be the SVD of the given core problem, B1 ∈ Rm̄×d̄,
A11 ∈ Rm̄×n̄; recall that max { n̄ , d̄ } ≤ m̄ ≤ n̄ + d̄. Because the whole analysis
in Chapter 3 was done for problems having at least as many rows as columns, here
at least n̄ + d̄ rows, add ρl+1 ≡ m̄ − (n̄ + d̄) zero rows to the [ B1 |A11 ] matrix, if
necessary, where [

B1 A11

0 0

]
=
[

U 0
0 Iρl+1

] [
Σ
0

]
V T

represents the SVD of the modified system (the matrix of right singular vectors
does not change). Consequently any solution which is constructed using columns
of the matrix V , as well as any assertion based on properties of the matrix V , do
not change. In this way we can apply to core problems all the tools developed in
Chapter 3.

6.3.1 Solution computed by the TLS algorithm

This section shows that the TLS algorithm (see Algorithm 3.1, Section 3.4), applied
on the given problem and on its core problem returns identical solutions (up to the
orthogonal transformations which reveals the core problem).

Let [ B1 |A11 ] be a core problem within the given approximation problem [B |A ]
and

PT
[

B A
] [ R 0

0 Q

]
=
[

B1 0 A11 0
0 0 0 A22

]
(6.10)

where P−1 = PT , Q−1 = QT , R−1 = RT , see also (4.3). Let (6.5) be the SVD
of [ B1 |A11 ] with partitioning given by (3.2)–(3.3), Δ ≡ κ (the partitioning (6.8)
with κ instead of q, and the corresponding partitioning of the square matrix [ Σ

0 ]),
where κ is determined by Algorithm3.1, applied on a core problem. Thus the TLS
algorithm returns the matrix

X1 ≡ −V
(κ)
22 V

(κ)†
12 (6.11)

as the solution of the core problem [B1 |A11 ]. Let A22 = S Θ WT be the SVD of
A22. Then

[
B A

]
=
(

P

[
U 0
0 S

]) [
Σ(κ)

1 Σ(κ)
2 0 0

0 0 Θ 0

]
⎛
⎜⎜⎜⎝
[

R 0
0 Q

] ⎡⎢⎢⎢⎣
V

(κ)
11 V

(κ)
12 0 0

0 0 0 I

V
(κ)
21 V

(κ)
22 0 0

0 0 W 0

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

T

represents (after permutation which sorts the singular values of Σ and Θ into one
nonincreasing sequence) the SVD of the original problem. This permutation also
changes the order of left and right singular vectors. Because the TLS algorithm
chooses κ such that V

(κ)
12 is of full column rank, the upper right block

R

[
V

(κ)
12 0 0
0 0 I

]
(6.12)
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is of full row rank, too. The permutation which sorts singular values of Σ and Θ
rearranges columns of (6.12) in the following way:

The block column containing the identity matrix I corresponds to the zero sin-
gular values (originated in the zero block column in the (6.10)) and thus this block
column can stay unchanged.

The singular values σj (Θ) > σmax (Σ(κ)
2 ) interlace with the singular values of

Σ(κ)
1 . The corresponding columns of the zero block column in (6.12) are by this

permutation moved left. Removing these corresponding zero columns from the full
row rank matrix (6.12) does not change the rank of (6.12). Thus the TLS algorithm
applied on [B |A ] chooses only the (permuted) submatrix of (6.12) without these
zero columns.

The singular values σj (Θ) ≤ σmax (Σ(κ)
2 ) are by this permutation interlaced

with the singular values of Σ(κ)
2 . The corresponding columns of the zero block

column in (6.12) are interlaced with columns of the left block column in (6.12).
Denote Π the permutation matrix which represents this interlacing. Denote further
W̃ the submatrix of the matrix W which contains right singular vectors of A22

corresponding to the singular values σj (Θ) ≤ σmax (Σ(κ)
2 ).

Then

R

[
[ V (κ)

12 | 0 ] Π 0
0 I

]
, Q

[
[ V (κ)

22 | 0 ] Π 0
[ 0 |W ] Π 0

]
, (6.13)

are the upper right, and lower right block of the matrix of right singular vec-
tors of the original problem [B |A ] chosen by the TLS algorithm for computing
the solution. Because the columns corresponding to the singular values σj (Θ) >

σmax (Σ(κ)
2 ) are moved left, both matrices in (6.13) can have less columns than the

matrix (6.12).
Consequently, the TLS algorithm returns the matrix

X ≡ −
(

Q

[
[ V (κ)

22 | 0 ] Π 0
[ 0 | W̃ ] Π 0

]) (
R

[
[ V (κ)

12 | 0 ] Π 0
0 I

])†
(6.14)

as the solution of the original problem [B |A ]. The successive using the properties
(2.16), (2.15), (2.16), (2.17) of the Moore-Penrose pseudoinverse, see Lemma 2.1,
gives (

R

[
[ V (κ)

12 | 0 ] Π 0
0 I

])†
=
([

[ V (κ)
12 | 0 ] Π 0

0 I

])†
RT

=
[

([ V (κ)
12 | 0 ] Π)† 0

0 I†

]
RT =

[
ΠT [ V (κ)

12 | 0 ]† 0
0 I

]
RT

=

⎡
⎣ ΠT

[
V

(κ)†
12

0

]
0

0 I

⎤
⎦ RT .

Thus

X = −Q

[
[ V (κ)

22 | 0 ] Π 0
[ 0 | W̃ ] Π 0

] ⎡⎣ ΠT

[
V

(κ)†
12

0

]
0

0 I

⎤
⎦ RT

= −Q

⎡
⎢⎢⎢⎣

[ V (κ)
22 | 0 ] ΠΠT

[
V

(κ)†
12

0

]
0

[ 0 | W̃ ] Π ΠT

[
V

(κ)†
12

0

]
0

⎤
⎥⎥⎥⎦ RT = −Q

[
V

(κ)
22 V

(κ)†
12 0

0 0

]
RT .

(6.15)
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Finally, comparing (6.11) and (6.15) gives

X = Q

[
X1 0
0 0

]
RT , (6.16)

the relationship between the solutions the original problem and its core problem.
We formulate this result as the following corollary.

Corollary 6.2. Let [ B |A ] be a general linear approximation problem and let
[ B1 |A11 ] be a core problem within [ B |A ]. Then the core problem contains all nec-
essary and sufficient information for computing the solution of the original problem
by the TLS algorithm (Algorithm 3.1).

Results obtained by Algorithm 3.1 applied on an original problem and a core
problem within it are identical up to the corresponding orthogonal transformations
(and adding some zero rows and columns).

Sufficiency of information follows from the construction (6.16), necessity from the
basic property that the core problem has minimal dimensions.

It is worth to recall that this section does not discus whether the solution com-
puted by Algorithm 3.1 is the TLS solution or not.

6.3.2 TLS solution of the core problem

This section focuses on the very important question whether a core problem has a
TLS solution. First of all it is necessary to recall some results from Chapter 3.

Let A11 X1 ≈ B1, A11 ∈ Rm̄×n̄, B1 ∈ Rm̄×d̄ be a core problem, and let (6.5)
be the SVD of [ B1 |A11 ] with the partitioning (6.8), (6.9). If V

(q)
12 ∈ Rd̄×(d̄+q) is of

full row rank equal to d̄ (equivalently, the problem is of the 1st class), then:

(i) If V
(−e)
12 ∈ Rd̄×(d̄−e) is of full column rank equal to d̄ − e (A11 X1 ≈ B1

belongs in the set F1 ∪ F2; see Figure 3.5, p. 55), then A11 X1 ≈ B1 has a
TLS solution.

(ii) Algorithm 3.1 applied on A11 X1 ≈ B1 computes the TLS solution if and
only if the rank of W (q,e) ∈ Rd̄×(q+e) is equal to e (A11 X1 ≈ B1 belongs in
the set F1).

A TLS solution can be obtained using the following construction. Consider an
orthogonal matrix Q̃ = diag (Q′ , Id̄−e ) ∈ R(d̄+q)×(d̄+q), Q′ ∈ R(q+e)×(q+e) such
that [

V
(q)
12

V
(q)
22

]
Q̃ =

[
vp+1 , . . . , vn̄+d̄

]
Q̃ =

[
Ω Γ̃
Ỹ Z̃

]
, (6.17)

where Γ̃ ∈ Rd̄×d̄ is nonsingular. Define the correction matrix

[
G̃ Ẽ

] ≡ − [ B1 A11

] [ Γ̃
Z̃

] [
Γ̃
Z̃

]T

. (6.18)

The corrected system (A11 + Ẽ)X1 = B1 + G̃ is compatible and the matrix

X̃1 ≡ − Z̃ Γ̃−1 (6.19)

solves the corrected system; see Theorem3.4.
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If V
(−e)
12 is of full column rank equal to d̄ − e (A11 X1 ≈ B1 belongs in the set

F1 ∪ F2), then the orthogonal matrix Q̃ exists.
If W (q,e) has rank equal to e (A11 X1 ≈ B1 belongs in the set F1), then the

orthogonal matrix Q̃ exists, and, moreover, Ω ≡ 0 in (6.17). Consequently,

X̃1 = − Z̃ Γ̃−1 = − [ Ỹ Z̃
] [ 0

Γ̃−1

]
= − [ Ỹ Z̃

]
Q̃T Q̃

[
0 Γ̃

]†
= − [ Ỹ Z̃

]
Q̃T
( [

0 Γ̃
]

Q̃T
)†

= −V
(q)
22 V

(q)†
12 ,

thus the matrix (6.19) is identical with the matrix computed by Algorithm 3.1, see
(6.11). The following theorem formulates the basic result for the TLS solution of a
core problem.

Theorem 6.2. Let A11 X1 ≈ B1, A11 ∈ Rm̄×n̄, B1 ∈ Rm̄×n̄ be a core problem, and
let (6.5) be the SVD of [ B1 |A11 ] with the partitioning (6.8), (6.9). If rank (V (q)

12 ) =
d̄ (i.e. the core problem is a problem of the first class) then the following assertions
are equivalent:

(i) The core problem belongs to the set F1 (see Figure 3.5 on p. 55);

(ii) σn̄ ([ B1 |A11 ]) > σn̄+1 ([ B1 |A11 ]);

Proof. First we proof (i) =⇒ (ii). Any problem of the 1st class belongs in the set
F1 if and only if the rank of the matrix W (q,e) ∈ Rd̄×(q+e) is equal to e. For any
core problem, the matrix W (q,e) is of full column rank, by Theorem6.1. Thus if the
core problem belongs in the set F1, then the matrix W (q,e) must have e columns,
which gives q = 0 and thus the assertion (ii) of this lemma (see (6.7)).

The other implication (ii) =⇒ (i) follows immediately. The assertion (ii) gives
q = 0. Thus V

(q)
12 ∈ Rd̄×(d̄+q) is square. Because V

(q)
12 is of full row rank, it has

linearly independent columns and thus the rank of the matrix W (q,e) ∈ R
d̄×(q+e) is

equal to e (see (6.9) and Figure 6.1, see also Figure 6.3)).

V =

⎫⎪⎬
⎪⎭ d̄

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n̄

︸ ︷︷ ︸
d̄ + q

d̄︷ ︸︸ ︷

�
�

�
	









�

W (q,e) ∈ Rd̄×(q+e)

Figure 6.3: The matrix W (q,e) which corresponds to the singular
value σn̄ ([ B1 |A11 ]) is of full column rank by Theorem6.1.
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Consequently, from Theorem6.2 it follows that a core problem belongs to the set
F1 if and only if it has the unique TLS solution, see Section 3.2.1.

In contrast to the single right-hand side case, we will show in Section 6.5 (see
Examples 6.1, 6.2, and 6.3) below, that the value of q can be for some core problems
nonzero. Thus the TLS algorithm (Algorithm 3.1) applied to the given core problem
computes either the uniquely defined TLS solution XTLS = −V

(q)
22 (V (q)

12 )−1, if
q = 0; or the solution XNGN = −V

(κ)
22 (V (κ)

12 )†, where the value of κ is determined
by the TLS algorithm, κ ≥ q > 0. The XNGN solution is called nongeneric, see
also Figure 3.5, p. 55.

6.4 On the existence of independent subproblems
within a core problem

In this section it will be shown that the core problem [ B1 |A11 ] can in some situ-
ations contain two or more independent subproblems which can be be solved inde-
pendently (see Section 6.5).

Lemma 6.1. Let [ B1,I |A11,I ] and [ B1,II |A11,II ] be matrices representing two in-
dependent approximation problems. Consider an approximation problem [ B1 |A11 ]
such that

[
B1 A11

] ≡ P

[
B1,I 0 A11,I 0
0 B1,II 0 A11,II

] [
R 0
0 Q

]T

, (6.20)

where P−1 = PT , Q−1 = QT , R−1 = RT are chosen arbitrarily. Then the
problems [ B1,I |A11,I ] and [ B1,II |A11,II ] have properties (G1)–(G3) if and only if
[ B1 |A11 ] has properties (G1)–(G3).

Proof. Property (G1): The matrices A11,I, A11,II are of full column rank iff the ma-
trix diag (A11,I , A11,II ) is of full column rank. Because P , Q are square orthogonal
matrices,

rank ( diag (A11,I , A11,II ) ) = rank (A11) ,

where A11 ≡ P diag (A11,I , A11,II )QT . Thus the matrices A11,I, A11,II are of full
column rank iff the matrix A11 is of full column rank.

Property (G2): The proof is analogous, the matrices B1,I, B1,II are of full column
rank iff the matrix diag (B1,I , B1,II ) is of full column rank. Because P , R are square
orthogonal matrices,

rank ( diag (B1,I , B1,II ) ) = rank (B1) ,

where B1 ≡ P diag (B1,I , B1,II )RT . Thus the matrices B1,I, B1,II are of full
column rank iff the matrix B1 is of full column rank.

Property (G3): Let ςi,I be the singular value of A11,I with the multiplicity ki,I,
and let U ′

i,I be the matrix with the corresponding orthonormal singular vectors as
its columns. Analogously let ςj,II be the singular value of A11,II with the multiplicity
kj,II, and let U ′

j,II be the matrix with the corresponding orthonormal singular vectors
as its columns. Then

(U ′
i,I)

T B1,I are of full row rank for all i, and

(U ′
j,II)

T B1,II are of full row rank for all j

iff

[
(U ′

i,I)
T 0

] [ B1,I 0
0 B1,II

]
and

[
0 (U ′

j,II)
T
] [ B1,I 0

0 B1,II

]
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are of full row rank for all i and all j, respectively. The columns of [ (U ′
i,I)

T | 0 ]T and
[ 0 | (U ′

j,II)
T ]T represent the left singular vectors of the matrix diag ( A11,I , A11,II ).

Using square orthogonal matrices P , R gives full row rank matrices( [
(U ′

i,I)
T 0

]
PT
)(

P

[
B1,I 0
0 B1,II

]
RT

)
=
[

(U ′
i,I)

T 0
]

PT B1 ,

( [
0 (U ′

j,II)
T
]

PT
)(

P

[
B1,I 0
0 B1,II

]
RT

)
=
[

0 (U ′
j,II)

T
]

PT B1 ,

where columns of P [ (U ′
i,I)

T | 0 ]T and P [ 0 | (U ′
j,II)

T ]T represent the left singular
vectors of the matrix A11.

Finally, let ςl be the singular value of A11 with the multiplicity kl, and let U ′
l

be the matrix with the corresponding orthonormal singular vectors as its columns.
Denote { ςi,I } and { ςj,II } the sets of distinct singular values of A11,I and A11,II,
respectively. There are three different situations:

• If ςl ∈ { ςi,I } and ςl �∈ { ςj,II }, then (U ′
l )

T B1 ≡ [ (U ′
i,I)

T | 0 ] PT B1 for some i,
and thus (U ′

l )
T B1 is of full row rank (kl = ki,I).

• If ςl �∈ { ςi,I } and ςl ∈ { ςj,II }, then (U ′
l )

T B1 ≡ [ 0 | (U ′
j,II)

T ] PT B1 for some
j, and thus (U ′

l )
T B1 is of full row rank (kl = kj,II).

• If ςl ∈ { ςi,I } and ςl ∈ { ςj,II }, then

(U ′
l )

T B1 ≡
[

(U ′
i,I)

T 0
0 (U ′

j,II)
T

]
PT B1

for some i and some j, and thus (U ′
l )

T B1 is of full row rank (kl = ki,I +kj,II).

Thus the matrices (U ′
i,I)

T B1,I, (U ′
j,II)

T B1,II are of full row rank for all i and all j

iff the matrices (U ′
l )

T B1 are of full row rank for all l.

Thus Lemma 6.1 says that the (de)composing (6.20) of independent problems having
the core problem properties (G1)–(G3) preserves these properties (G1)–(G3). The
following definitions introduce the terminology used further in the text.

Definition 6.3 (Composed problem). Let [ B1,I |A11,I ] and [ B1,II |A11,II ] be ma-
trices representing two independent approximation problems. The problem [ B |A ]
obtained as in (6.20) is called composed problem.

Definition 6.4 (Decomposable core problem). The core problem [ B1 |A11 ] for
which there exist orthogonal matrices P , Q, R such that (6.20) holds and B1,I,
B1,II, A11,I, A11,II, are nontrivial (each of them have at least one column) is called
decomposable core problem.

Subproblems [ B1,I |A11,I ] and [ B1,II |A11,II ] of the given decomposable core prob-
lem are called independent subproblems within the core problem.

Remark 6.2. The core problem with with the single right-hand side (i.e. d̄ = 1)
is non decomposable. The decomposable core problem [ B1 |A11 ], A11 ∈ R

m̄×n̄,
B1 ∈ Rm̄×d̄ can be decomposed into at most d̄ non decomposable independent core
subproblems, at most m̄ − n̄ of them incompatible, at most d̄ − (m̄ − n̄) of them
compatible.

The following sections give some examples of decomposable problems. It is
worth to note here that the question how to identify whether the core problem is
decomposable or not is, in general, not yet resolved.



102 CHAPTER 6. CORE PROBLEM

6.4.1 Independent subproblems within the SVD form of a
core problem

Let [ B1 |A11 ] be a core problem in the SVD form B1 ∈ Rm̄×d̄, A11 ∈ Rm̄×n̄, see
Chapter 4.

Because the matrix A11 is diagonal, for the existence of a decomposition of the
given problem it is sufficient that the right-hand side matrix B1 has a chessboard
structure of zero and nonzero blocks, as in the following example:

[
B1 A11

]
=

⎡
⎢⎢⎣

♥ ♥ ς ′1
♥ ♥ ς ′2
0 0 ♥ 0 0 ς ′3
♥ ♥

⎤
⎥⎥⎦ permute

3rd row
down (once)

−→

−→

⎡
⎢⎢⎢⎣

♥ ♥ 0 ς ′1
♥ ♥ 0 ς ′2
♥ ♥ 0

♥ ς ′3

⎤
⎥⎥⎥⎦

and permute
3rd column
right (twice)

−→

−→

⎡
⎢⎢⎣
⎡
⎣ ♥ ♥ ς ′1

♥ ♥ ς ′2
♥ ♥

⎤
⎦ 0

0
[ ♥ ς ′3

]
⎤
⎥⎥⎦ two independent

subproblems
are obtained.

(6.21)

If the right-hand side has a chessboard structure, then the core problem is decom-
posed only using permutations, B1 = Π1 diag (B1,I , B1,II )ΠT

2 ; the decomposition
of A11 is trivial because it is diagonal.

Remark 6.3. Recall that Definition 6.4 of the decomposable core problem does not
cover the case

PT
[

B1 A11

] [ R 0
0 Q

]
=
[

B1,I 0 A11,I

0 B1,II 0

]
, (6.22)

where B1,II corresponds to the null space of AT
11 (A11,II is trivial, it has no columns),

e.g.,⎡
⎢⎢⎣

♥ ♥ ς ′1
♥ ♥ ς ′2
♥ ♥ ς ′3

♥

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
⎡
⎣ ♥ ♥ ς ′1

♥ ♥ ς ′2
♥ ♥ ς ′3

⎤
⎦ 0

0
[ ♥ ]

⎤
⎥⎥⎦ (6.23)

where the third column of B1 is orthogonal to R (A11). Motivated by such situation,
we denote bj, j = 1 , . . . , d̄, the columns of B1, then we distinguish between the
following three cases: the column bj ∈ R (A11) we call compatible column within the
given core problem; the columns bj ⊥ R (A11) we call R (A11)-orthogonal column
within the core problem; the column bj, for which bj �∈ R (A11) and bj �⊥ R (A11),
we call mixed column within the core problem. In the SVD form of the core prob-
lem these three types of columns are given directly from the structure of nonzero
components in B1, e.g.,

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

♥ ♥ ♥ ♥
♥ ♥ ♥ ♥
♥ ♥ ♥ ♥
♥ ♥ ♥ ♥

♥ ♥ ♥ ♥
♥ ♥ ♥ ♥

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ n̄

}
full row rank
equal to m̄ − n̄

.

︸ ︷︷ ︸
full column rank equal to d̄

(6.24)
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The left block is formed of compatible columns, the middle block by mixed columns,
and the right block by R (A11)-orthogonal columns.

The situation (6.22) occurs iff B1 contains only the compatible and the R (A11)-
orthogonal columns. It can be interpreted such that the problem [ B1 |A11 ] contains
two independent subproblems: one is compatible (and thus it has a solution in the
classical meaning) and the second with trivial system matrix (the second does not
influence the solution, it influences only the correction).

6.4.2 Orthogonal transformation preserving the SVD form
of the core problem

In both examples (6.21), (6.23), the decomposing of the given problem is guaranteed
by the chessboard structure of zero and nonzero blocks in B1. The right-hand side
B1 having chessboard structure always can be transformed into a block diagonal
form B1 = Π1 diag (B1,I , B1,II )ΠT

2 , using some permutation matrices Π1, Π2.
Any given decomposable core problem as well as all the independent subprob-

lems within this decomposable core problem can be in the SVD form. Thus for a
decomposable core problem in the SVD form there exists an orthogonal transfor-
mation preserving the SVD form, i.e. preserving properties (S1)–(S3), such that
it reveals the chessboard structure of the right-hand side. This section presents a
class of orthogonal transformations preserving the SVD form of a core problem.

Consider a core problem A11 X1 ≈ B1 in the SVD form (4.25), i.e.

[
B1 A11

]
=

⎡
⎢⎢⎢⎣

D1 ς ′1 Ir1

...
. . .

Dk ς ′k Irk

Dk+1 0

⎤
⎥⎥⎥⎦ ∈ R

m̄×(n̄+d̄) ,

where the matrix B1 = [ DT
1 , . . . , DT

k |DT
k+1 ]T ∈ Rm̄×d̄ has orthogonal nonzero

columns ordered in a nonincreasing sequence with respect to their norms, and the
blocks Dj ∈ Rrj×d̄ have orthogonal nonzero rows ordered in a nonincreasing se-
quence with respect of their norms, for j = 1 , . . . , k + 1. Further consider an
orthogonal transformation of the form

PT

⎡
⎢⎢⎢⎣

D1 ς ′1 Ir1

...
. . .

Dk ς ′k Irk

Dk+1 0

⎤
⎥⎥⎥⎦
[

R 0
0 Q

]
, (6.25)

where P−1 = PT , Q−1 = QT , R−1 = RT , which preserves the properties (S1)–
(S3). First, because the transformation (6.25) preserves (S1), i.e. PT A11 Q = A11,
matrices P , Q must be block diagonal such that

PT A11 Q ≡ ( diag (Q , Qk+1 ) )T A11 Q

=

⎡
⎢⎢⎢⎣

Q1

. . .

Qk

Qk+1

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

ς ′1 Ir1

. . .

ς ′k Irk

0

⎤
⎥⎥⎥⎦
⎡
⎢⎣

Q1

. . .

Qk

⎤
⎥⎦ ,

where Q−1
j = QT

j , Qj ∈ R
rj×rj , j = 1 , . . . , k + 1.

Here it is worth to recall the following assertion. Let M be a matrix with
mutually orthogonal nonzero columns (i.e. M is of full column rank) ordered in the
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nonincreasing sequence with respect to their norms. Then the norms of it columns
represent singular values of M . The matrix of left singular vectors of M contains
normalized columns of M , and the matrix of right singular vectors is the identity
matrix. Analogously for the matrix with mutually orthogonal nonzero rows ordered
in a nonincreasing sequence with respect to their norms (e.g. MT ).

Further we focus on preserving (S2) property. Let B1 = UB ΣB Id̄ be the
SVD of B1. The transformation (6.25) preserves (S2), i.e. the matrix PT B1 R =
(PT UB R ) (RT ΣB R ) has orthogonal nonzero columns ordered in a nonincreasing
sequence with respect to their norms. The matrix P does not change norms of
columns of B1 as well as angles between columns of B1, thus preserving (S2) does not
restrict the matrix P . But for the matrix R it is allowed to form only (orthogonal)
linear combinations of the columns of B1 with the same norm, i.e. RT ΣB R = ΣB.
Consequently the matrix R must be block diagonal such that

PT B1 R = PT B1 diag (R1 , . . . , R� ) ,

where R−1
j = RT

j , Rj ∈ Rsj×sj , sj is the multiplicity of the jth greatest singular
value of B1, j = 1 , . . . , �, and � is the number of distinct singular values of B1.

And, finally, we focus on preserving (S3) property; the considerations here are
analogous to the previous case. For all Dj blocks, let Dj = Irj Σj V T

j be the
SVD of Dj . The transformation (6.25) preserves (S3), i.e. the matrix QT

j Dj R =
(QT

j Σj Qj ) (QT
j V T

j R ) has orthogonal nonzero rows ordered in a nonincreasing
sequence with respect to their norms. The matrix R does not change norms of
rows of Dj as well as angles between rows of Dj, thus preserving (S3) does not
restrict the matrix R. But for the matrix Qj it is allowed to form only (orthogonal)
linear combinations of the rows of Dj with the same norm, i.e. QT

j Σj Qj = Σj .
Consequently the matrix Qj must be block diagonal such that

QT
j Dj R = (diag (Q1,j , . . . , Qκj,j ) )T Dj R ,

where Q−1
i,j = QT

i,j, Qi,j ∈ Rti,j×ti,j , ti,j is the multiplicity of the ith greatest
singular value of Dj , i = 1 , . . . , κj , and κj is the number of distinct singular
values of Dj. All for j = 1 , . . . , k + 1.

The structure of the whole transformation preserving the SVD form of a core
problem is shown on Figure 6.4.

⎡
⎢⎢⎢⎣

D1 ς ′1 Ir1

...
. . .

Dk ς ′k Irk

Dk+1 0

⎤
⎥⎥⎥⎦

�
. . .

�

�

�

�
. . .

�

��	

R2

�
��	

R

�
�	

QT
3,1

��	

PT

�
���Qk�

���
Q�

�
��

QT
k+1

Figure 6.4: Structure of transformations preserving the SVD form
of a core problem.

Summarized, if the core problem is decomposable, then there exists an orthog-
onal transformation with the described structure, see Figure 6.4, such that this
transformation reveals the chessboard structure of the right-hand side. After a
permutation is applied on the suitably transformed problem, all independent sub-
problems are revealed.
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6.4.3 Independent subproblems within the banded form of a
core problem

Let [ B̃1 | Ã11 ] be a decomposable core problem in the banded form B̃1 ∈ Rm̄×d̄,
Ã11 ∈ Rm̄×n̄, see Chapter 5.

When the whole matrix [ B̃1 | Ã11 ] has the chessboard structure, it can be de-
composed, see the following example:

[
B̃1 Ã11

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

♣ 0 0 ♣
♣ ♥ 0 ♣

♣ 0 ♥
♣ 0
0 ♣ ♣
0 ♣ ♣
0 ♣ ♣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

permute
4th column
left (twice)

−→

−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

♣ ♣ 0 0
♣ ♥ ♣

♣ ♥
0 ♣ 0 0 0 0 0 0

♣ ♣
♣ ♣

♣ ♣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

permute
4th row
up (twice)

−→

−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ ♣ ♣
♣
]

0

0

⎡
⎢⎢⎢⎢⎣

♣ ♥ ♣
♣ ♥

♣ ♣
♣ ♣

♣ ♣

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

two independent
subproblems
are obtained.

This example uses the information that some ♥ components (β components, e.g. in
(5.16)) are equal to zero.

Recall that in Sections 6.4.1 and 6.4.2 it is used the fact that the system matrix
A11 is diagonal. Thus it is sufficient to reveal only a chessboard structure of the
right-hand side matrix B1 for decomposing the core problem.

Here it is worth to recall the SVD preprocessing of the right-hand side, see
Section 5.1. Algorithm5.1 applied on a problem with the SVD-preprocessed right-
hand side gives B̃1 diagonal (all β coefficients in the right-hand side are equal to
zero). Consequently it is sufficient to reveal only a chessboard structure of the
system matrix Ã11 for decomposing the core problem. Thus the SVD preprocessing
seems to be useful in practical computation.

6.5 Solution of the decomposable core problem

This section focuses on solving decomposable core problems. Thus it is closely
connected with Section 6.3. We introduce this section by the following example.

Example 6.1. Let [ B1,I |A11,I ] and [ B1,II |A11,II ] be matrices representing two
independent approximation problems. Let UI ΣI V T

I and UII ΣII V T
II be the SVD of

[ B1,I |A11,I ] and [ B1,II |A11,II ], respectively, both with partitioning given by (6.8),
see also (3.2)–(3.3). Consider that the value of q, see (6.7), is equal to zero for both
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problems, thus matrices V12,I, V12,II (we omit the upper index (0)) are square. Thus

[
B1,I A11,I

]
= UI

[
Σ1,I Σ2,I

] [ V11,I V12,I

V21,I V22,I

]T

,

[
B1,II A11,II

]
= UII

[
Σ1,II Σ2,II

] [ V11,II V12,II

V21,II V22,II

]T

.

(6.26)

Consider further that both these matrices V12,I, V12,II are nonsingular. In other
words, we consider that both problems [ B1,I |A11,I ] and [ B1,II |A11,II ] have the
unique TLS solutions

XI ≡ V22,I V −1
12,I , XII ≡ V22,II V −1

12,II , (6.27)

see also Section 3.2.1; these solution are also computed by the TLS algorithm (Al-
gorithm 3.1). Finally, consider the composed problem (6.20) with P = I, Q = I,
R = I, [

B1 A11

] ≡
[

B1,I 0 A11,I 0
0 B1,II 0 A11,II

]
. (6.28)

Denote [ B1 |A11 ] = U Σ V T the SVD of the composed problem (6.28). Then using
(6.26) gives the following decomposition

[
B1 A11

]
=
[

B1,I A11,I 0 0
0 0 B1,II A11,II

]⎡⎢⎢⎣
I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

⎤
⎥⎥⎦

=
[

UI 0
0 UII

] [
Σ1,I Σ2,I 0 0
0 0 Σ1,II Σ2,II

]⎡⎢⎢⎣
V11,I V12,I 0 0

0 0 V11,II V12,II

V21,I V22,I 0 0
0 0 V21,II V22,II

⎤
⎥⎥⎦

T

which represents (after permutation which sorts singular values of ΣI and ΣII into
one nonincreasing sequence) the SVD [ B1 |A11 ] = U Σ V T . This permutation also
changes the order of left and right singular vectors.

The question is whether a solution of the composed problem (6.28) is given by
the solutions (6.27) of its independent subproblems.

In order to answer this question we focus on two special relationships between
the singular values of ΣI and ΣII that may occur (recall that the problems are inde-
pendent):

(a) Assume σmin (Σ1,II) > σmax (Σ2,I) and σmin (Σ1,I) > σmax (Σ2,II), then

V =

⎡
⎢⎢⎣

V11,I 0 V12,I 0
0 V11,II 0 V12,II

V21,I 0 V22,I 0
0 V21,II 0 V22,II

⎤
⎥⎥⎦
[

Π1 0
0 Π2

]
≡
[

V11 Π1 V12 Π2

V21 Π1 V22 Π2

]
,

where Π1, Π2 represent column permutations; Π1 sorts the singular values
of Σ1,I and Σ1,II into one nonincreasing sequence, and Π2 sorts the singular
values of Σ2,I and Σ2,II into one nonincreasing sequence. The upper right
block V12 Π2 of the matrix V is square nonsingular. Because the assumed
inequalities are strict, the composed problem has the unique TLS solution

X ≡
[

V22,I 0
0 V22,II

]
Π2 ΠT

2

[
V12,I 0

0 V12,II

]−1

=
[

XI 0
0 XII

]
,

which is also computed by the TLS algorithm (Algorithm 3.1).
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(b) Assume σmax (Σ2,I) ≥ σmax (Σ1,II), then

V =

⎡
⎢⎢⎣

V11,I V12,I 0 0
0 0 V11,II V12,II

V21,I V22,I 0 0
0 0 V21,II V22,II

⎤
⎥⎥⎦
[

I 0
0 Π

]
≡
[

V
(κ)
11 V

(κ)
12 Π

V
(κ)
21 V

(κ)
22 Π

]
,

where Π represents column permutation, which sorts the singular values of
Σ2,I, Σ1,II, and Σ2,II into one nonincreasing sequence. The upper right block
V

(κ)
12 Π is rectangular of full row rank (number of its columns is κ + number

of its rows, κ > 0). The TLS algorithm (Algorithm 3.1) returns as solution
the matrix

X ≡
[

V22,I 0 0
0 V21,II V22,II

] [
V12,I 0 0

0 V11,II V12,II

]†

=
[

V22,I V −1
12,I 0

0 [ V21,II |V22,II ] [ V11,II |V12,II ]†

]

=
[

XI 0
0 0

]
.

This occurs, e.g., when one subproblem dominates the other subproblem (i.e.
all the singular values of one subproblem are larger than all singular values of
the second subproblem).

The example above has the following corollary.

Corollary 6.3. The solution of a composed problem [ B1 |A11 ], computed by Algo-
rithm 3.1, differs from the solution composed from independent solutions, computed
by Algorithm 3.1 too, of the independent subproblems within [ B1 |A11 ].

Recall that the transformation from the original problem [B |A ] to its core problem
[ B1 |A11 ] preserves the solution obtained by the TLS algorithm (Algorithm 3.1),
see Corollary 6.2. Corollary 6.3 gives that the decomposing of [B1 |A11 ] (if it
is decomposable) and treating subproblems independently does not preserve the
solution obtained the by the TLS algorithm (Algorithm3.1).

Assume for this moment that the composed problem [ B1 |A11 ] from Example 6.1
represents a decomposable core problem within [B |A ], i.e. [ B1 |A11 ] has proper-
ties (G1)–(G3). (Recall the composed problem [B1 |A11 ] has properties (G1)–(G3)
if and only if both independent subproblems [B1,I |A11,I ] and [ B1,II |A11,II ] have
properties (G1)–(G3), by Lemma6.1.)

The core problem [ B1 |A11 ] belongs in the set F1 (see Figure 3.5, p. 55) if and
only if Algorithm3.1 applied on [B1 |A11 ] returns the unique TLS solution, by
Theorem6.2; it is proved in Section 6.3. In Section 6.3 there remains an unanswered
question, whether there exists a core problem which does not belong in the set F1.
Example 6.1 partially answers this question; further in the text, we show on simple
examples that the (decomposable) core problem (of the form (6.28)) can be of the
2nd class (in the case (b), see Example 6.1). Recall that a problem is of the 2nd
class if the matrix V (q), see (6.7)–(6.8), is rank deficient.
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Example 6.2. Using the same notation as in Example 6.1, let

[
B1,I A11,I

]
=

⎡
⎣ ♥ σ′

1,I 0
♥ 0 σ′

2,I

♥ 0 0

⎤
⎦ ,

[
B1,II A11,II

]
=

⎡
⎣ ♥ σ′

1,II 0
♥ 0 σ′

2,II

♥ 0 0

⎤
⎦ ,

have properties (G1)–(G3). Then the singular values of [ B1,I |A11,I ], [ B1,II |A11,II ]
are simple. Let

[
B1,I A11,I

]
=UI diag (σ1,I , σ2,I , σ3,I )

⎡
⎣ v11,I v12,I v13,I

v21,I v22,I v23,I

v31,I v23,I v33,I

⎤
⎦ ,

[
B1,II A11,II

]
=UII diag (σ1,II , σ2,II , σ3,II )

⎡
⎣ v11,II v12,II v13,II

v21,II v22,II v23,II

v31,II v23,II v33,II

⎤
⎦ ,

be the SVD decompositions and assume σ3,I > σ1,II, i.e.

σ1,I > σ2,I > σ3,I > σ1,II > σ2,II > σ3,II . (6.29)

Because both these problems can be treated as core problems with single right-hand
sides, both have the unique TLS solution, i.e. v13,I �= 0, v13,II �= 0. The matrix of
the right singular vectors of the composed problem (6.28) is

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

v11,I v12,I v13,I 0 0 0
0 0 0 v11,II v12,II v13,II

v21,I v22,I v23,I 0 0 0
v31,I v23,I v33,I 0 0 0

0 0 0 v21,II v22,II v23,II

0 0 0 v31,II v23,II v33,II

⎤
⎥⎥⎥⎥⎥⎥⎦ ≡

[
V

(q)
11 V

(q)
12

V
(q)
21 V

(q)
22

]
,

with q = 0 (see (6.7)); and the matrix V
(q)
12 is rank deficient. Problems with the

rank deficient matrix V
(q)
12 are called problems of the 2nd class (the set of these

problems is denoted S ), see Figure 3.5, p. 55.

Example 6.3. Assuming, e.g.,

σ1,I > σ2,I > σ1,II > σ2,II > σ3,I > σ3,II

instead of (6.29), in Example 6.2, gives

V
(q)
12 =

[
v13,I 0

0 v13,II

]
≡
[

W (q,e) V
(−e)
12

]
,

the decomposable core problem of the 1st class belonging in the set F1 (q = 0,
e = 1). Assuming, e.g.,

σ1,I > σ2,I > σ1,II > σ3,I = σ2,II > σ3,II

instead of (6.29) gives

V
(q)
12 =

[
v13,I 0 0

0 v12,II v13,II

]
≡
[

W (q,e) V
(−e)
12

]
,
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the decomposable core problem of the 1st class belonging in the set F2 (q = 1,
e = 1; note that v12,II �= 0, by Theorem 6.1).

In the last case consider the decomposable core problem, composed from three
problems having properties (G1)–(G3) with the single right-hand sides, all having
the same dimensions as in Example 6.2; we use analogous notation. Assuming, e.g.,

σ1,I > σ2,I > σ1,II > σ2,II > σ1,III > σ3,I = σ3,II > σ2,III > σ3,III ,

gives

V
(q)
12 =

⎡
⎣ v13,I 0 0 0

0 v13,II 0 0
0 0 v12,III v13,III

⎤
⎦ ≡

[
W (q,e) V

(−e)
12

]
,

where v13,I �= 0, v13,II �= 0, and v13,III �= 0. Thus V
(q)
12 (q = 1) is of full row rank,

and V
(−e)
12 (e = 1) is rank deficient. The this decomposable core problem is of 1st

class belonging in the set F3. See also Figure 3.5, p. 55.

Examples 6.1, 6.2, and 6.3 give the following corollary.

Corollary 6.4. The core problem [ B1 |A11 ] (in particular the decomposable core
problem) may be of the 1st class (belonging to any of the sets F1, F2, or F3), as
well as of the 2nd class.

The solution of the core problem computed by Algorithm 3.1 may represent either
the unique TLS solution (see Section 3.2.1), if [ B1 |A11 ] belongs in the set F1; or
the nongeneric solution, if [ B1 |A11 ] belongs in the set F2 ∪ F3 ∪ S . See also
Figure 3.5, p. 55.

6.5.1 Composed solution of a composed problem

This section introduces the composed solution for composed problems, (e.g. for
decomposable core problems).

Example 6.1 shows that the solution computed by the TLS algorithm (Algo-
rithm 3.1) applied to a composed problem can be different from the solution ob-
tained by the application of the TLS algorithm on the independent subproblems
within the composed problem, in general (see Example 6.1, case (b)). The following
lemma compares norms of these solutions.

Lemma 6.2. Let [ BI |AI ] and [ BII |AII ] be two independent subproblems of the
composed problem

[
B A

] ≡ P

[
BI 0 AI 0
0 BII 0 AII

] [
R 0
0 Q

]T

,

not necessarily having properties (G1)–(G3). Denote XI, [ GI |EI ], XII, [ GII |EII ],
and X, [ G |E ] the solutions with the corresponding corrections of both subprob-
lems and of the composed problem, respectively, all computed via the TLS algorithm
(Algorithm 3.1). Further denote

XComp. ≡ Q

[
XI 0
0 XII

]
RT , (6.30)

the composed solution, with the corresponding correction

[
GComp. EComp.

] ≡ P

[
GI 0 EI 0
0 GII 0 EII

] [
R 0
0 Q

]T

. (6.31)
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Then

‖X‖ ≤‖XComp.‖ ≡ max { ‖XI‖ , ‖XII‖ } ,

‖X‖F ≤‖XComp.‖F ≡ ( ‖XI‖2
F + ‖XII‖2

F

)1/2
.

(6.32)

In words, the solution of a decomposable problem computed by the TLS algorithm
directly can not have larger norm than the solution composed from solutions of its
independent core subproblems.

Proof. Denote

[
BI AI

]
= UI

[
Σ(κ)

1,I Σ(κ)
2,I

] [ V
(κ)
11,I V

(κ)
12,I

V
(κ)
21,I V

(κ)
22,I

]T

,

[
BII AII

]
= UII

[
Σ(ν)

1,II Σ(ν)
2,II

] [ V
(ν)
11,II V

(ν)
12,II

V
(ν)
21,II V

(ν)
22,II

]T

,

the SVD decompositions of the independent subproblems. The values of κ and ν
are chosen by the TLS algorithm such that, they are smallest for which:

(i) V
(κ)
12,I and V

(ν)
12,II are rectangular of full row rank; and

(ii) σmin (Σ(κ)
1,I ) > σmax (Σ(κ)

2,I ) and σmin (Σ(ν)
1,II) > σmax (Σ(ν)

2,I ).

The solutions of individual subproblems computed by the TLS algorithm and the
composed solution are

XI ≡ −V
(κ)
22,I V

(κ)†
12,I , XII ≡ −V

(ν)
22,II V

(ν)†
12,II ,

XComp. ≡ − diag (V
(κ)
22,I V

(κ)†
12,I , V

(ν)
22,II V

(ν)†
12,II ) ,

for the Frobenius and 2-norm of these solutions see Lemma3.2. Further, the matrix
of right singular vector of the composed problem [B |A ] is

V ≡
[

R 0
0 Q

]
⎡
⎢⎢⎢⎢⎣

V
(κ)
11,I V

(κ)
12,I 0 0

0 0 V
(ν)
11,II V

(ν)
12,II

V
(κ)
21,I V

(κ)
22,I 0 0

0 0 V
(ν)
21,II V

(ν)
22,II

⎤
⎥⎥⎥⎥⎦ Π ,

where Π is a permutation which rearranges columns of the matrix while sorting
the singular values of both subproblems in one nonincreasing sequence. The TLS
algorithm applied on the composed problem chooses the integer μ analogously as
for the subproblems; such that (i) the upper right block V

(μ)
12 of V is of full column

rank; and (ii) the singular value corresponding to the last column of V
(μ)
11 is strictly

bigger than the singular value corresponding to the first column of V
(μ)
12 .

Thus V
(μ)
11 must contain at least both matrices V

(κ)
12,I, V

(ν)
12,II as submatrices, but

it can contain some extra columns (depending on the relationship between singular
values of individual subproblems), i.e. μ ≥ ν + κ. Then the solution computed by
the TLS algorithm applied on the composed problem is

X ≡ −V
(μ)
22 V

(μ)†
12 ,

for the Frobenius and 2-norm of these solutions see Lemma 3.2. Adding the extra
columns (discussed above) to the matrix

diag (V
(κ)
12,I , V

(ν)
12,II )
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in order to obtain V
(μ)
12 causes, by Theorem2.1 (interlacing theorem for singular

values), that the singular values can not decrease. The Frobenius and 2-norm of
the solution computed by the pseudoinverse of this matrix can not increase which
gives (6.32). See the proof of Lemma3.3, see also the proof of Lemma 3.2.

In Example 6.1, case (b), it is shown that the solution of the decomposable
problem can not contain all the information which is contained in the solutions of
all its subproblems, in general. Consequently, when we want to obtain the solutions
of all subproblems within the composed problem, then these subproblems must
be solved independently. The fact that some information can be removed when
the independent subproblems are solved together may be a consequence of the
regularizing properties of the nongeneric solution (recall the truncated TLS concept,
see also Lemma3.12).

The solution XComp. defined as in (6.30) is important in the case when all its
(non decomposable) core subproblems have unique TLS solution (as in Example
6.1; see also Section 3.2.1). Whether each non decomposable core problem has the
unique TLS solution is not known yet. When this hypothesis is true and each non
decomposable core problem has the unique TLS solution, then any given problem
can be reduced to its core problem, which can be further decomposed into (non
decomposable) subproblems within it. Solving these subproblems independently,
composing, and transforming back to the coordinates of the original problem give
a well defined and unique solution.

The core problem in the multiple right-hand side case can be of the 1st class
(belonging to any of the sets F1, F2, or F3), as well as of the 2nd class, see Corol-
lary 6.4. Thus the TLS algorithm (Algorithm 3.1) applied on a core problem can
return a nongeneric solution. From a statistical point of view, this nongenericity of
the composed core problem may be a consequence of the fact that the part [ BT

1,I | 0 ]T

of the right-hand side is not correlated with the column space of [ 0 |AT
1,II ]T , and,

vice versa, the part [ 0 |BT
1,II ] of the right-hand side is not correlated with the col-

umn space of [ AT
1,I | 0 ]T . On the other hand, statistical methods can be useful in

identification of the independent subproblems within the decomposable core prob-
lem.

If the TLS algorithm applied on a core problem returns a nongeneric solution,
see Corollary 6.4, may it be interpreted such that there are two or more different
and statistically independent subproblems mixed together in the core (and thus
also in the original) problem; subproblems which must be solved independently? Is
each core problem, for which the TLS algorithm returns the nongeneric solution,
decomposable? Recall that core problem with single right-hand side is non decom-
posable and it has the unique TLS solutions (which is also computed by the TLS
algorithm). On the other hand, recall that all problems, including core problems,
belonging to the F2 set have the TLS solution (but the TLS algorithm does not
compute it).
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Chapter 7

Bidiagonalization and core
problem identification

This chapter, as well as whole Part II of this thesis, focuses on the numerical
experiments related to the theory of problems with single right-hand sides, discussed
in the introduction of the thesis.

First, in this chapter, several different and well known approaches to bidiago-
nalization are briefly mentioned. Then our aim is to identify a core problem within
the given problem Ax ≈ b. We illustrate a difficulty of core problem revealing on
an example, and shortly discuss the meaningfulness of using the TLS concept in
various problems.

7.1 Implementation remarks on bidiagonalization

It is well known that the bidiagonalization of a given matrix can be computed by
different algorithms, and can yield different bidiagonal forms, e.g. lower or upper
bidiagonal matrices.

The first well known approach is called Householder bidiagonalization algorithm,
see [32, Algorithm 5.4.2, p. 252]. When the Householder reflection matrices are
suitably applied, see e.g. [32, § 5.1.2–4, pp. 209–211], this algorithm is sufficiently
fast and numerically stable. This algorithm is usually used for bidiagonalization of
small and dense matrices.

Another approach represents the Golub-Kahan algorithm. First, it is worth to
note that although the bidiagonal matrix (lower or upper) given by the Householder
algorithm is unique, the result of Golub-Kahan algorithm depends on a starting
vector. But both approaches are closely related: For A ∈ Rm×n and b ∈ Rm,
the results of the upper bidiagonalization of [ b |A ], obtained by the Householder
algorithm, is identical to the results of the Golub-Kahan lower bidiagonalization of
A started with the vector b, until the first zero bidiagonal element arises. In [64] and
also in Section 1.4 it is shown that such bidiagonalization applied on the data A,
b originated in an approximation problem Ax ≈ b yields the core problem within
Ax ≈ b and the core problem is revealed exactly when the first zero bidiagonal
component arises. In this chapter we aim at the numerical identification of a core
problem, thus we are interested just in the described bidiagonalization.

Recall that the Golub-Kahan algorithm for computing the lower bidiagonal form
of A started with the right-hand side b can be written as in (1.11). Putting w0 ≡ 0
and the normalization of the starting vector s1 ≡ b/β1, where β1 ≡ ‖b‖, the
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algorithm computes for j = 1 , 2 , . . .

wj αj ≡ AT sj − wj−1 βj ,

sj+1 βj+1 ≡ Awj − sj αj ,

where ‖wj‖ = 1, αj ≥ 0, and ‖sj+1‖ = 1, βj+1 ≥ 0, until αj = 0 or βj+1 = 0,
or until dimensions of A are exceeded, i.e. j = min {m , n }. This algorithm is
usually used for bidiagonalization of large and sparse matrices.

It is well known that the vectors wj and sj produced by the Golub-Kahan
algorithm are mutually orthonormal in exact arithmetic [57]. But in finite precision
arithmetic the orthogonality among them is lost in few iterations. In order to
stabilize the computation, each newly computed vector wj or sj is reorthogonalized
among w1 , . . . , wj−1 or s1 , . . . , sj−1, respectively. Really stable implementation is
obtained only if the vectors are reorthogonalized against all the previously computed
vectors two times, see e.g. [54]. More than two times reorthogonalization is useless.
The Golub-Kahan algorithm with two times reorthogonalization is sufficiently fast
and stable (comparably to the Householder algorithm). The lost of orthogonality
among computed vector wj and sj is proportional to the machine precision εM .
The disadvantage of such implementation of the Golub-Kahan algorithm is the
growing of the computational time for one iteration during the computation. Our
aim is to identify the core problem, or, because we use finite precision arithmetic,
to approximate the core problem, in order to reduce dimensions of the original
problem. Namely when we can expect a resulting subproblem of relatively small
dimensions, the two times reorthogonalization does not prolong the computational
time significantly.

Assuming that the matrix A is considerably rectangular, meaning that m � n
or m � n, the bidiagonalization algorithm can be further modified. For example
when m � n the QR decomposition of A is computed and then the triangular
factor is bidiagonalized instead of A, see e.g. [32, §5.4.4, pp. 252–253]. The QR
decomposition can be computed either using the Householder reflection matrices or
better by the modified Gram-Schmidt algorithm with iterative refinement, see [32,
Chapter 5.2, pp. 223–236]. Such QR-preprocessing reduces the computational time,
but can influence the attainable accuracy of the computed result. The other case
m � n is similar, the LQ decomposition instead QR is used.

7.2 An example of the core problem identification

In all the following numerical experiments we try to identify the core problem of
known dimensions. The original problem contains compatible core problem of given
dimensions m̄ ≡ n̄ ≡ k. The bidiagonal form Lk x1 = β1 e1 of the core problem
is computed and we look at the computed bidiagonal components. One can expect
that βk+1 = 0 or, at least, βk+1 ≈ 0, but it is well known that the bidiagonal
components are very sensitive (although the bidiagonalization is stable, i.e. the lost
of orthogonality in both orthogonal factors is proportional to the relative machine
precision εM , and the singular values of the bidiagonal factor well approximate the
singular values of A). These experiments illustrate that the value of the computed
βk+1 can be far from zero.

We use the SVD-form of core problem (1.10) for construction of the experiment.
Consider the matrix and the right-hand side having the form

A = P

[
A11 0
0 γ A22

]
QT ≡ P

[
diag (σ1, . . . , σk) 0

0 γ A22

]
QT ∈ R

n×n ,

b ≡ P

[
rand(k,1)

0

]
∈ R

n ,
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where P , Q are arbitrary orthogonal matrices (computed by qr(rand(n)) com-
mand, see [53])1. In the experiment n = 300, k = 20 and

[ σ1 , σ2 , σ3 , . . . , σ20 ] = [ 100 , 95 , 80 , . . . , 5 ] ,

i.e. singular values of A11 linearly decay, ‖A11‖ = 100. Projections of the right-
hand side onto the left singular subspaces of A11 are chosen randomly. For the non-
core matrix we use Frank matrix A22 ≡ 0.01*gallery(’frank’,n-k), see [53],
with the norm ‖A22‖ ≈ 198.1791 comparable to A11. The parameter γ represents
a ratio between the core and non-core part, i.e. between the useful and irrelevant
information, in the matrix A. We try to find the core problem for seven different
γs chosen such that

γ = 10.^[-2.5:0.7:2] ≈ 0.003162 , 0.01585 ,

0.07943 , 0.3981 , 1.9953 , 10.0000 , 50.1187 ,

in MATLAB notation. For the singular values of A see Figure 7.1, where the singular
values of A11 followed by singular values of γ A22 are plotted for all used values of
the parameter γ.

The values of γ are chosen such that for small values of γ the singular values
of A11, i.e. the useful information, dominates in the problem. On the other hand,
for large values of γ the irrelevant information represented by A22 completely cover
the useful data in the problem, e.g. for the largest γ, 100 = ‖A11‖ � ‖γ A22‖ ≈
9932.5 and the information which is not correlated to the right-hand side dominates
in the matrix A. It seems to be senseless to use the TLS formulation for solving
the original problem for large γ, the problem must be incorrectly assembled.

The results of the core problem identification obtained by the Householder al-
gorithm for selected values of γ are presented in Figures 7.2–7.6. In particular,
Figure 7.2 shows the result for γ ≈ 0.003162; results for the second and third γ are
very similar. The value of β21 is approximately equal to 10−12 for all the first three
values of γ. Figure 7.3 shows result for γ ≈ 0.3981; here the norm of the non-core
part of A is equal to 78.8965, the core problem is revealed too, but not as well as
in the previous cases, the component β21 is approximately 10−9, it is over the level
of machine precision. For γ ≈ 1.995 the core problem is not revealed correctly,
the smallest of the bidiagonal components is β23 ≈ 10−5, see Figure 7.4. On Fig-
ures 7.5 and 7.6 the core problem is definitely not revealed, the useful information
is completely lost.

On all graphs the solid line represents the computed alphas, the dashed line
represents the computed betas. The horizontal line in the bottom of each graph
represents the machine precision level related to the given problem, ε ≡ n ‖A‖F εM .
One can see that for small values of γ the core problem reveals well, β21 is evi-
dently smaller than the others bidiagonal components. With growing γ the results
are not satisfactory yet. The wrong results obtained for large γ are probably the
consequence of an inappropriately assembled problem, as discussed above. The ex-
periment illustrates well the large sensitivity of bidiagonal components despite the
fact that the stability of computation is held.

Similar results can be obtained for another choice of the A22 matrix, e.g., the
random matrix A22 = rand(n-k,n-k), see [53].

Householder bidiagonalization algorithm was used (the implementation was writ-
ten by the author of this thesis). The experiment was carried out on the computer
Hewlett-Packard Compaq nx9110, Intel Pentium 4 CPU, 2.80 GHz, 448 MB RAM,
in MATLAB 6.5.0.180913a Release 13 under Windows XP Home Edition operating
system, using the IEEE754 standard double precision floating point arithmetic.

1All phrases typeset by TypeWriter font style are MATLAB commands or subroutines, we
refer to the MATLAB manual [53] for their description.
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Figure 7.1: The singular values of A11 followed by the singular
values γ A22 for different values of γ.
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Figure 7.2: For γ ≈ 0.003162 the core problem of dimension k =
20 is revealed, β21 ≈ 10−12, similarly for γ ≈ 0.01585 , 0.07943.
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Figure 7.3: For γ ≈ 0.3981 the core problem of dimension k = 20
is revealed, but β21 ≈ 10−9 is over the level of machine precision.
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Figure 7.4: For γ ≈ 1.9953 the core problem of dimension k = 20
is not revealed correctly. The smallest component is β23 ≈ 10−5.
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Figure 7.5: For γ ≈ 10.0000 the core problem is not revealed, but
there are still some small betas.

0 10 20 30 40 50 60 70 80 90 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Bidiagonal components of A, γ = 50.118723

ε ≡ n || A ||
F
 ε

M

[ α
1
, α

2
, α

3
, α

4
, ... ]

[ β
1
, β

2
, β

3
, β

4
, ... ]

Figure 7.6: For γ ≈ 50.1187 the core problem is not revealed,
here the useful information is completely covered.



Chapter 8

Noise level revealing using
the bidiagonalization, with
application in hybrid
methods

The Golub-Kahan bidiagonalization [27] leading to a fundamental decomposition of
data, revealing the so called core problem [64], also has been used for iterative solving
of large ill-posed and rank-deficient problems for years. It is the first step in hybrid
methods which combine the outer bidiagonalization (or another Lanczos-type process
that can also be viewed as a regularization) together with an inner regularization of
the projected problem. Several hybrid methods are developed and considered in the
literature, see for example [56, 19, 36, 48] or [49]. Ill-posed problems from the core
problem point of view has been studied by D. Sima and S. Van Huffel [72, 74].

In solving practical problems it is necessary to decide when it is optimal to stop
the (outer) bidiagonalization process, the regularization potential of the bidiagonal-
ization has been noticed by Golub and Kahan [27], and later pointed out in relation
with using the bidiagonalization for solving linear algebraic systems by Paige and
Saunders, see [59, 60] or [70]. Recent examples can be found, e.g., in [34], where
hybrid methods based on bidiagonalization are described as least squares projection
methods, or [75], where bidiagonalization is used to compute low rank approxima-
tions of large sparse matrices. Numerical stability of the bidiagonalization algorithm
has been studied, and new stable variants have been proposed, see, e.g., [3, 75].

An appropriate inner regularization method with suitably chosen parameters is
based mostly on the estimation of the L-curve using the L-ribbon [11], the dis-
crepancy principle and generalized cross validation [5, 6]. For an application of
Tikhonov regularization method in TLS and LS concepts see [25]. These techniques
have been widely studied and compared, e.g., in [36]. See also [38] for practical ap-
plications in image deblurring. The noise level revealing based on analysis of given
vectors in the frequency domain is discussed in [39, 37].

8.1 Introduction to ill-posed problems

In this chapter we experimentally investigate on an example a possibility of the
noise level detection from the bidiagonalization process. This noise level detection
is further used in a simple hybrid method based on TSVD for reconstructing the
solution.
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Consider an ill-posed linear system, with square nonsingular matrix (i.e. com-
patible problem), with the right-hand side polluted by white noise

Ax = b , A ∈ R
n×n , b = bexact + bnoise ∈ R

n , (8.1)

where
‖bexact‖ � ‖bnoise‖ . (8.2)

We wish to approximate
xexact = A−1 bexact . (8.3)

In ill-posed problems the matrix A is usually a discretisation of a smoothing con-
tinuous operator and the singular values of A gradually decay to zero without a
noticeable gap. The left as well as the right singular vectors of A corresponding
to large singular values are dominated by low frequencies, and, vice versa, singular
vectors corresponding to small singular values are dominated by high frequencies.
The vector bexact (as well as the noised right-hand side b) are typically dominated
by low frequencies, see for example Figure 8.1. Ill-posed problem are often discussed
in the literature, we refer to [36, 38].

The idea of revealing the noise will be explained on the following example.
Consider the testing problem

A ≡ shaw(400) ∈ R
400×400 , (8.4)

from Regularization Toolbox [35], with corresponding right-hand side. (Note that
the [A,b,x] = shaw(n) command returns the matrix, with the noise-free right-
hand side, as well as the exact solution. Thus we will be able to measure the
relative errors of computed solutions further in the text.) White noise is added
artificially; we approximate it by a random vector scaled such that

46.6225 ≈ ‖bexact‖ � ‖bnoise‖ = 10−12 , (8.5)

using the following sequence of the MATLAB commands: noise = rand(400,1),
noise = (1e-12)*noise/norm(noise), see [53].

It is well known that the direct solution xnaive ≡ A−1 b is inapplicable because
it is completely dominated by noise. Using the SVD of A, A = U ′ Σ′ (V ′)T , this
direct naive solution can be rewritten in the form

xnaive =

⎛
⎝ n∑

j=1

(u′
j)

T bexact

σ′
j

v′j

⎞
⎠+

⎛
⎝ n∑

j=1

(u′
j)

T bnoise

σ′
j

v′j

⎞
⎠ . (8.6)

The first sum in (8.6) must converge to xexact. It means that the numerators in the
first sum in (8.6), i.e. the components of bexact in the left singular vector subspaces
of A, decay faster than (or, at least, as fast as) the singular values in denominators,
with growing j. In other words, the exact right-hand side bexact satisfies the so
called discrete Picard condition, see [36].

On the other hand bnoise represents white noise, and because the left singular
vectors of A constitute an orthonormal basis, i.e. the specific Fourier basis (rep-
resenting frequencies), bnoise must have comparable components in all left singular
vector subspaces. Thus the projections in the second sum in (8.6) do not decay
with growing j, and thus they can not decay faster than the singular values in the
denominators. The white noise can not satisfy the discrete Picard condition.

See also Figure 8.2: the left picture corresponds to the matrix (8.4), the right
corresponds to a typical matrix that originates in image deblurring [38]. We see
that first the right-hand side projections onto the left singular subspaces follow the
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Figure 8.1: The top left picture shows the “surface” (see [53],
command surf) of the matrix A ≡ shaw(400). The top right
plot shows singular values of A in logarithmic scale. The bottom
left plot shows the first five left singular vectors of A. The bottom
right plot shows the noised right-hand side b ≡ bexact + bnoise, see
also (8.4)–(8.5).

singular values. Then, at some point, they begin to stagnate, the projections of the
noise dominate the projections of the exact right-hand side. On both graphs the
projections are plotted for three different noise levels, ‖bnoise‖ = 10−10 , 10−8 and
10−6. (On the left graph is only a few projections that follows the singular values,
therefore, for better illustration, we include the right graph. For clarity we do not
plot the noise level 10−12 used in our experiment; the corresponding projections
are very close to the singular values.) For the exact right-hand side, the rounding
errors cause a similar effect.

Consequently, dividing each noise projection by the corresponding singular value
which is smaller than this projection, magnifies the noise information in the sec-
ond sum in (8.6). The magnified noise completely cover the useful information,
‖A−1 bexact‖ � ‖A−1 bnoise‖, and thus xnaive does not approximate (8.3).

The regularization methods can be interpreted as filtering methods where each
summand in both sums in (8.6) is multiplied by a factor Φj , e.g.,

Φj =
(σ′

j)
2

(σ′
j)2 + λ2

for a given λ yields the well known Tikhonov regularization method. The aim of
filtering is to eliminate the influence of the small singular values in the sum.

In the further text we will use the truncated SVD (TSVD) regularization method.
The TSVD method, also called truncated LS (T-LS), yields, for the given index r,
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Figure 8.2: The left picture corresponds to the matrix A ≡
shaw(400), the right corresponds to a typical matrix arising in
image deblurring, see [38]. The solid line represents singular val-
ues of the matrix, the dots represent projections of the noised
right-hand side to the left singular vector subspaces of the matrix
for three different noise levels: 10−10 (at the bottom), 10−8 and
10−6 (at the top).

the solution

xTSVD,r ≡ A†
r b , where Ar ≡

r∑
j=1

u′
j σ′

j v′j
T

is the best rank r approximation of A in the Frobenius norm. This solution rewritten
in the dyadic form (8.6), where each summand is multiplied by 1 or 0, i.e.,

Φj =
{

1 when j ≤ r
0 when j > r

,

give us the filter function assigned to the TSVD method. The difficulty in using
regularization methods is choosing the suitable regularization parameter, e.g. λ in
the Tikhonov method, or r in the TSVD method.

It was shown in [64], see also Chapter 1, that the upper bidiagonalization of
[ b |A ], realized, e.g., by the Golub-Kahan bidiagonalization algorithm (1.11), yields
a core problem within Ax = b which contains the necessary and sufficient informa-
tion for solving the original problem. In particular the bidiagonalization algorithm
yields the sequence of projected subproblems

Lj x = e1 β1 , Lj ∈ R
j×j , for j = 1 , 2 , . . . ,

that approximate the (compatible) core problem. In other words, the bidiagonal-
ization concentrates the useful information in the leading principal bidiagonal block
while moving the irrelevant and redundant information into A22, see (1.9).

Our goal is to approximate the core problem within Ax = bexact as well as
possible, i.e., stop the bidiagonalization for some k by putting βk+1 = 0 such
that Lk x = e1 β1, in the best case, does not contain any noise pollution, or it is
insignificantly polluted by noise (i.e., the subproblem Lk+1 x = e1 β1 is the first
approximation of the core problem significantly polluted by noise).

In the following two sections, first, a method for revealing the noise level, i.e. for
identifying such k, is introduced. Then we discus how to approximate the solution
of (8.1)–(8.3). Both are illustrated on the given example.
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8.2 Noise level revealing example

First we note, that similar ideas are used in [39, 37]. In these papers the authors use
the information available in the residual vector and Arnoldi vectors, respectively,
for choosing the regularization parameter in a discrete ill-posed problem. Authors
show how to use statistical tools and Fourier analysis in the basis of singular vectors
as well as in the standard trigonometric basis (using the fast Fourier transforms)
to extract this information efficiently. In our experiment we use the left vectors
produced by the Golub-Kahan bidiagonalization process (instead of residual vectors
or Arnoldi vectors) to obtain an information about the noise level in the data.

In the following we use the Golub-Kahan bidiagonalization algorithm (1.11), see
Chapter 1 (and also Chapter 7). Vectors sj , and wj , denote the vectors generated
by the Golub-Kahan bidiagonalization of A started with the right-hand side b con-
taminated by noise, vectors u′

j , and v′j are the left and right singular vectors of the
matrix A.

The vector s1 = b/‖b‖ is the normalized noised right-hand side and therefore
it is contaminated by noise. The vector w1 is obtained from s1 by action of the
smoothing operator AT thus it has the information about the noise, but it is nec-
essarily smoothed. The vector s2 is obtained from w1 by action of action of the
smoothing operator A, or, equivalently from s1 by the smoothing operator AAT .
The subsequent orthogonalization of AAT s1 against s1 represents a linear combi-
nation of s1 contaminated by noise and AAT s1 which is smooth. Therefore the
contamination of s1 by noise is transferred to s2. Analogously for the other vectors
s3 , s4 , . . . , sj , which are obtained from (AAT )j s1 through the orthogonalization
against the vectors sj−1 , . . . , s1 (here we deal with mathematical properties in ex-
act arithmetic and do not consider specific implementation details). Equivalently,
sj can be considered as the normalized part of AAT sj−1 orthogonal to the subspace
span ( s1 , AAT s1 , . . . , (AAT )j−2 s1 ). Consequently, the noise contamination in
s1 is transferred to sj , and it can be expected that subtracting the smooth com-
ponents proportional to AAT s1 , . . . , (AAT )j−2 s1 will significantly increase the
relative size of the high frequency noise. On the contrary the recurrence for the
vectors wj starts with w1 = AT s1/‖AT s1‖ and all the vectors wj are smoothed.
orthogonalized against any noised vector. Consequently we are interested in the
noised sj vectors, in the further text.

In order to identify a procedure for noise revealing, the vectors sj are analyzed
in the frequency domain, i.e. we compute the Fourier coefficients with respect to
a sequence of appropriate orthonormal vectors given by the left singular vectors u′

j

of A which in Ax = b generate the right-hand side b. It can be expected that
the vector s1 has dominant components in directions of several first left singular
vectors representing low frequencies, in particular u′

1. When projecting out the low
frequency information, s2 , s3 , . . . will have dominating components in directions
of the left singular vectors around u′

2 , u′
3 , . . . with the level of noise gradually

increasing. Finally, for some k the vector sk has comparable components in many
singular vector subspaces, and the noise is revealed, see Figure 8.3.

A disadvantage of this process is the high computational cost of the SVD. The
basis consisting of left singular vectors is very natural, but its computing is too
expensive.

However, it is reasonable to expect that the noise revealing result can be ob-
served in any other (suitable) Fourier basis. For illustration we use the standard
trigonometric basis, i.e.

fj(x) ≡ e( 2πi
n )jx , for j = 0 , ±1 , ±2 , . . . , (8.7)
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Figure 8.3: The first twenty-five left vectors computed by the
double reorthogonalized Golub-Kahan bidiagonalization, applied
on the ill-posed problem with noised right-hand side (8.4)–(8.5).
Obviously, vectors s17, s18 are strongly affected by noise.

for a vector of length n, here i is the imaginary unit. Computing the Fourier
coefficients in trigonometric basis is very fast and efficient using e.g. fast Fourier
transforms (FFT) algorithm, [12, 15], see also command fft in [53].

Thus we study the noisy vectors sj produced by the Golub-Kahan algorithm
using the Fourier analysis, i.e. in the frequency domain. Two orthogonal bases are
used, the basis of the left singular vectors U ′ = [ u′

1 , . . . , u′
n ] of A (we are inter-

ested in vectors (U ′)T sj), and the standard trigonometric basis (8.7). Algorithmi-
cally, we use the Golub-Kahan bidiagonalization with double reorthogonalization,
see Chapter 7. The Fourier coefficients in the singular vector basis are computed
(using [U,S,V] = svd(A)) by the command transpose(U)*s j. The coefficients
in the (8.7) basis are computed by the command fft(s j), see [53]. Results of
both Fourier analysis of sj , j = 1 , . . . , 25, for the testing problem (8.4)–(8.5) are
plotted on Figures 8.4 and 8.5. (The data plotted in Figure 8.5 are obtained by
abs(fft(s j))/n, see [53].)

One can observe that the noise level in sj grows until the vector s18 (the plot at
the bottom left) is fully dominated by noise. The full dominance can be identified
through the fact that the noise level in the subsequent vector s19 is significantly
lower than in s18. It is a consequence of the orthogonalization of s19 against s18,
the noise is partially projected out.

Similar behavior of vector sj can be observed for another choice of of the noise
level in the problem (8.1)–(8.3). For example when ‖bnoise‖ = 10−8 the first two
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Figure 8.4: The first eighty Fourier coefficients of the vectors sj

in the basis of the left singular vectors of A, i.e., the first eighty
components of the vectors (U ′)T sj , for j = 1 , . . . , 25. One can
see the relative increase of the noise level. It can observed that
for j = 18 the noise level reaches its relative maximum, while for
j = 19 it relative decreases due to the orthogonality of s19 and
s18 (compare with Figure 8.5). The dashed lines represent the
machine precision level εM . All graphs are in logarithmic scale
with range 10−18–102.

noised vectors are s13, s14. In s14 the noise level reaches its relative maximum,
while in s15 we can observe the relative decrease of the noise level. All the resulting
graphs are very similar. Without the additional noise the vector s18 is the first vector
strongly affected by noise. The results are very similar for our testing problem with
‖bnoise‖ = 10−12. It is caused by rounding errors, recall that the matrix A is rank
deficient with numerical rank approximately equal to 20.

In the further text we investigate a usage of this technique to the approximation
of the solution (8.3).

8.3 Approximation of the exact solution

In the example presented in Section 8.2 the noise level has to reach the level of the
useful information in the data at the step j = 18. An approximation of the solution
xexact of the original problem Ax = b computed through the bidiagonal problem

Lj y = e1 β1 , for j > 18 ,



128 CHAPTER 8. NOISE LEVEL REVEALING USING THE BIDIAG...

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

s
16

s
17

s
18

s
19

s
20

s
21

s
22

s
23

s
24

s
25

Figure 8.5: The first eighty Fourier coefficients of vectors sj in
the trigonometric basis; computed by fft MATLAB command,
for j = 1 , . . . , 25. The noise level is maximal in the vector
s18, then it is partially projected out in s19. All graphs are in
logarithmic scale with range 10−8–100.

can therefore be significantly polluted by the noise. The simplest way to approxima-
tion the solution is to compute it directly from the projected problem L18 y = e1 β1.
We will see that such solution does not approximate xexact well and therefore we
will use a simple inner regularization.

8.3.1 Direct solving

The simplest way to approximate the solution xexact of the original problem is by
stopping the Golub-Kahan algorithm directly in the 18th iteration and compute

xk = (Wk L−1
k ST

k ) b , (8.8)

for k = 18, where Sk = [ s1 , . . . , sk ] and Wk = [ w1 , . . . , wk ]. Because the exact
solution is known (the command shaw returns the matrix A, noise-free right-hand
side vector bexact, as well as the exact solution xexact, see [35]), then

‖xexact − x18‖
‖xexact‖ ≈ 0.81902

is the relative error. Figure 8.6 presents both the exact solution and the solution
computed by (8.8). The computed solution is clearly much more oscillating than the
exact solution, the result is not satisfactory. The reason is that the original problem
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is ill-posed, and the small projected problem Lk x = e1 β1 may be ill-posed too.
Moreover the termination occurs too early, and some useful information is lost with
the eliminated noise.

In other words, the projected matrix Lk can have small singular values which
magnify the “noise” in the computed intermediate results caused by rounding errors.
In the following section we try to analyze the possible sources of troubles and
improve the computed solution.
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Figure 8.6: The exact solution of the ill-posed problem (8.4)–(8.5)
and the approximate solution computed from L18 x = e1 β1. The
computed solution is obtained from an approximation of the core
problem. The bidiagonalization is stopped when the noise level
reaches the level of useful information in the data.

8.3.2 Inner regularization

First we study the singular values of the bidiagonal matrix Lk for different k in our
example, see Figure 8.7. We see, that the smallest singular value of the matrix L18,

σmin (L18) ≈ 4.8029× 10−14

is very small. The matrix L18 is nearly numerically rank deficient. Therefore x18

does not represent a good approximation of xexact. We will apply the inner TSVD
regularization for stabilizing the solution.

Consider the SVD of the bidiagonal matrix

Lk = P Θ QT , Θ = diag ( θ1 , . . . , θk ) ,

where Lk , P , Θ , Q ∈ Rk×k and P−1 = PT , Q−1 = QT . Denote

Pk ≡ Sk P ∈ R
n×k , Qk ≡ Wk Q ∈ R

n×k ,
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then PT
k AQk = Θ. Further denote pj , qj , the jth columns of Pk and Qk, j =

1 , . . . , k, respectively. Consider the following approximate solution of Ax = b as

xTSVD,r
k ≡

r∑
j=1

pT
j b

θj
qj , for r ≤ k ,

i.e. the TSVD concept is applied on the projected problem Lk x = e1 β1 and the
solution is then transformed back into the variables of the original problem. We
study the relative error

‖xexact − xTSVD,r
k ‖

‖xexact‖ ,

for the fixed index k = 18, see Figure 8.8. Recall, once again, that here the fixed in-
dex k represents the step of the bidiagonalization process revealed using the Fourier
analysis above, and the index r is the truncation level in the inner TSVD regular-
ization process when solving the problem with the bidiagonal matrix Lk.

On Figure 8.8 we see that the relative error of the TSVD regularized solution of
Lk x = e1 β1 is small when the singular values of Lk smaller than ε = n ‖A‖ εM

are removed from the solution process, see Figure 8.7 for the singular values of Lk.
We can review the dependence of the error of the approximate solution:

(i) Stopping Golub-Kahan bidiagonalization too early (for k ≤ 17) does not
allow the noise to affect the approximate the solution, but a significant useful
information is lost and thus the approximation is not optimal.

(ii) When stopping Golub-Kahan bidiagonalization exactly when the noise is re-
vealed (in our experiment k = 18), the inner TSVD regularization with trun-
cation level r = k − 1 (= 17) gives a reasonably good approximation of the
exact solution.

(iii) Continuing the Golub-Kahan bidiagonalization (for k ≥ 21) and applying
the inner TSVD regularization sometimes gives a further slight decrease of
the error, see Table 8.1 and Figure 8.8.

The computed results for our experiment are summarized in Table 8.1. The best
approximation of xexact (measured by the relative error) we obtain when the Golub-
Kahan algorithm was stopped in the 22th iteration with the TSVD truncation level
r = 18, see also Figure 8.8. Note that the improvement of the approximation
while continuing the bidiagonalization, phase (iii), does not occur in general in our
example, it depends on the particular noise generated by the rand command. We
do not present neither the regularized solution xTSVD,17

18 nor the slightly improved
xTSVD,18

22 (graphs analogous to Figure 8.6) because the differences between them and
xexact are not visible, both approximations look like the solid line in Figure 8.6.

GK algorithm stopped at k = 16 17 . . .
minimal relative error is at r = 16 17 . . .
relative error is approximately ≈ 10−4× 7.5082 5.3364 . . .

. . . 18 19 20 21 22 25 32

. . . 17 17 17 18 18 18 18

. . . 4.5939 4.5946 4.0134 4.0420 3.9834 4.0480 40480

Table 8.1: The minimal relative errors of xTSVD,r
k for various k,

see also Figure 8.8.
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8.4 Summary

Here we have presented an example of the hybrid approach which uses information
about the level of noise in the data revealed by the Golub-Kahan bidiagonalization.
We believe that a similar idea can be used in practical problems, and in our further
work we aim to focus on construction of an effective stopping criteria for hybrid
methods based on the discrepancy principle.

All the numerical experiments in this chapter were carried out on the computer
Hewlett-Packard Compaq nx9110, Intel Pentium 4 CPU, 2.80 GHz, 448 MB RAM,
in MATLAB 6.5.0.180913a Release 13 under Windows XP Home Edition operating
system, using the IEEE754 standard double precision floating point arithmetic.
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Chapter 9

Conclusions and open
questions

In this chapter we summarize results presented in the thesis. We formulate some
open questions and mention some possible directions for further work.

9.1 Conclusions

Part I summarizes fundamentals of the total least squares theory in the single right-
hand side case based on the work of Golub, Van Loan, Van Huffel, Vandewalle,
Paige, Strakoš and others. Parts II and III of the presented thesis investigate an
extension of the concept of the core reduction of Paige and Strakoš to a general
unitary invariant linear algebraic approximation problem AX ≈ B; we focus on
the problems with multiple right-hand sides.

First, in Part II, starting from the results of Van Huffel and Vandewalle, we
investigate the fundamental question of the existence of the TLS solution, and
present a basic classification of the TLS problems. It is shown that the formulation
of the TLS problem with multiple right-hand sides is significantly more complicated
than the single right-hand side TLS problem and the results of Chapter 3 reflect the
difficulties which have been revealed in our work on the subject.

The data reduction in Part III, which aims at the minimally dimensioned core
problem containing the necessary and sufficient information for solving the problem
with the original data, starts with the SVD-based transformation, which extends
the work of Paige and Strakoš. Another reduction, in the single right-hand side case
described by Paige, Strakoš, Hnětynková and the author of this thesis is based on the
banded generalization of the Golub-Kahan iterative bidiagonalization, as suggested
by Å. Björck and D. M. Sima. Using some properties of the class of generalized
Jacobi matrices we investigate further properties of the suggested banded form of
the reduced problem.

We have presented the proof of minimality of the SVD-based form as well as the
banded form, and proved their equivalence. This allows to define the core problem
for problems with multiple right-hand sides. In particular, we relate the solvability
of the reduced problem obtained via the core problem approach to the result of the
classical TLS algorithm by S. Van Huffel applied directly on the original problem.
We showed that the solution computed by the classical TLS algorithm of Van Huffel
is not necessarily the TLS solution of the given approximation problem.

Contrary to the single right-hand side case, the core problem may not have the
TLS solution. We describe so called decomposable core problems and show that
there exists a whole class of decomposable core problems which do not have the

135
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TLS solution. Because the core problems in the problems with single right-hand
sides are non decomposable, its TLS solution always exists. We formulate, with
some ambiguity, the following conjecture:

Conjecture 9.1. Any non decomposable core problem has the unique TLS solution.

In decomposable core problems that we have presented the difficulty is caused by the
fact that the problem links together data from different independent subproblems.
If Conjecture 9.1 is correct, then the decomposing of decomposable core problem
reveals the hidden structure of independent subproblems which should be treated
separately. Then the obtained solution naturally differs form the solution obtained
by the classical TLS algorithm by Van Huffel and Vandewalle which considers all
data in one problem.

If Conjecture 9.1 is not correct, then the TLS formulation for the problems with
multiple right-hand sides lacks in some cases a consistently defined solution. We still
do not know how to identify and decompose all decomposable problems. Therefore
we were unable to prove or disprove Conjecture 9.1.

Part IV of this thesis presents on an example a possible hybrid method for
solving ill-posed problems, this method uses the Golub-Kahan bidiagonalization
and it is based on core problem ideas, concerning fundamental data decomposition
while accumulating necessary and sufficient data in a partially constructed A11

block. It is shown that the Golub-Kahan iterative bidiagonalization can be used for
revealing the level of noise present in the data. In the example we combine the outer
regularization accomplished by the bidiagonalization (the Lanczos-type process),
which projects the original problem onto a Krylov subspace of small dimensions,
with inner TSVD regularization.

Numerical results are presented. Unfortunately, they are not yet compared with
results obtained by other hybrid methods. We believe that the presented idea can
be used in practical computations as a contribution towards building efficient and
reliable stopping criteria of the outer iterative process.

9.2 Open questions and possible directions for fur-

ther research

Now we shortly summarize some questions which are interesting in the context of
the material presented in this thesis but which are out of the scope of the presented
text. In Part II, one can ask about the relationship between the TLS solution
and the solution computed by the algorithm by Van Huffel, Vandewalle, and about
an interpretation of such a relationship in application areas such as computational
statistics. Similarly, it is desirable to give a possible statistical interpretation of the
decomposability of the (core) problem. We believe that the statistical point of view
and its combination with the matrix computation point of view can help in getting
further understanding.

We are well aware of many important questions related to practical implementa-
tions and computations. For example, one can expect that a suitable preprocessing
of the matrix right-hand side B can improve the behavior of the banded gener-
alization of the Golub-Kahan algorithm. Numerical behavior can be studied in
relationship with the block Lanczos algorithm.

Numerical analysis and solution of ill-posed problems illustrated in Part IV pro-
duces in the context of the core problem approach many very interesting problems.
The presented noise-revealing idea is certainly worth of further effort. Hybrid meth-
ods for large ill-posed problems represent a very hot topic in scientific computing.
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[P2] Martin Plešinger, Zdeněk Strakoš: Singular value decomposition – ap-
plication in image deblurring (in Czech), Seminar on Numerical Analysis ’06,
Praha, ICS AS CR (2006), pp. 78–81.
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[P6] Martin Plešinger, Zdeněk Strakoš: Total least squares formulation in
problems with multiple right-hand sides (in Czech), Proceedings of XII. PhD.
Conference ’07 (F. Hakl, Ed.), Praha, ICS AS CR & Matfyzpress (2007),
pp. 70–74.

International conferences (talks and posters)
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mentals of total least squares problems, 13th Czech-French-German Confer-
ence on Optimization Heidelberg, Germany, September 17–21, 2007.

Local conferences (talks and posters)
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